Module 3
Graph Theoretic Segmentation

Scott T. Acton

Virginia Image and Video Analysis (VIVA), Charles L. Brown
Department of Electrical and Computer Engineering
Department of Biomedical Engineering
University of Virginia, Charlottesville, VA 22904

Neuroscience will be the main application of information theory as we transition from the century of physics to the century of biology.

-- Toby Berger, November 2011
This lecture

• Will address
 – (In detail) Graph Theoretic Segmentation and matching of filamentous objects – e.g., neurons
 • Tree2Tree Segmentation
 • Path2Path Neuron Matching
 – (Briefly) Graph Cut segmentation

• Will not address the entirety of graph theoretic segmentation methods for biology

The NEUROME

• Idea: create an atlas of neurons for a given organism
 – Shape: determines function and connectivity
 – Is shape important? YES!
 – Useful for determining the function/circuit of the animal
 – Useful for measuring changes in neuron morphology as targeted by a drug

• Our work: fruit fly (Drosophila) central nervous system neurons
 (images acquired by Barry Condron lab)
Challenges in Image Analysis

- Images have very low contrast, filament discontinuity and poorly defined boundaries
- Difficult to have a reliable ground truth
- Edge-finding or seed growing algorithms perform poorly because of lack of contrast and inconsistent thickness in dendritic trees.
Stages of Image Analysis in NEUROME

- **First Stage:**
 - Automatic segmentation/tracing of a single neuron

- **Second Stage:**
 - Use segmented neurons to build a neuron database
 - Classify neurons as same type/function
 - Use query neurons to retrieve similar neurons

To Accomplish Comparison

1. Segmentation (tracing): Tree2Tree
2. Neuron Matching: Path2Path

Both use basic graph theory...

Methods here can be applied to other segmentation problems in biology involving objects such as angiography
Example 3D Neuron

Hessian

Basic idea:

• Evaluate eigenvalues of Hessian

\[\mathbf{T}_x = \lambda x \]

<table>
<thead>
<tr>
<th>2D</th>
<th>3D</th>
<th>orientation pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_1)</td>
<td>(\lambda_2)</td>
<td>(\lambda_3)</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>H+</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>H+</td>
</tr>
<tr>
<td>L</td>
<td>H+</td>
<td>H+</td>
</tr>
<tr>
<td>L</td>
<td>H+</td>
<td>H+</td>
</tr>
<tr>
<td>H+</td>
<td>H+</td>
<td>H+</td>
</tr>
<tr>
<td>H+</td>
<td>H+</td>
<td>H+</td>
</tr>
</tbody>
</table>

Credit: Frangi et al.
Hessian Based Directional Enhancing

\[H(x, y, z) = \text{Hessian of 3D image } I(x, y, z) = \begin{bmatrix} \frac{\partial^2 I(x, y, z)}{\partial x^2} & \frac{\partial^2 I(x, y, z)}{\partial x \partial y} & \frac{\partial^2 I(x, y, z)}{\partial x \partial z} \\ \frac{\partial^2 I(x, y, z)}{\partial x \partial y} & \frac{\partial^2 I(x, y, z)}{\partial y^2} & \frac{\partial^2 I(x, y, z)}{\partial y \partial z} \\ \frac{\partial^2 I(x, y, z)}{\partial x \partial z} & \frac{\partial^2 I(x, y, z)}{\partial y \partial z} & \frac{\partial^2 I(x, y, z)}{\partial z^2} \end{bmatrix} \]

\[\lambda_1(x, y, z), \lambda_2(x, y, z) \text{ and } \lambda_3(x, y, z) \text{ are eigenvalues of } H(x, y, z) \text{ such that } \]

\[|\lambda_1(x, y, z)| \leq |\lambda_2(x, y, z)| \leq |\lambda_3(x, y, z)| \]

Enhanced pixel \(E(x, y, z) = \begin{cases} \frac{(|\lambda_1| - |\lambda_2|)^2}{|\lambda_1||\lambda_2|-|\lambda_3|} & \text{when } \lambda_2 < 0 \text{ and } \lambda_3 < 0 \\ 0 & \text{otherwise} \end{cases} \)
Binary Clustering of Enhanced Image

Broken Components

3D Medial Tree of Each Connected Component
Tree2Tree

- Linking Components

This is the closest leaf pair

\[d_{ij} = \lambda (\text{euclidean distance}) + (1 - \lambda) (\text{leaf tangent orientation difference}) \]

Basu, Aksel, Condron, Acton, 2010

Tree2Tree

- **Step 4**: Find the minimum spanning tree of the \(k \)-NN graph
Linking Components Through Tree2Tree

Tree2Tree

- Alpha-Beta prunes less likely nodes contributing to high edge weight - removal of cluttering artifacts (see appendix for more detail)
Pruning Unlikely Branches

Spline Fitting
Red: Tree2Tree

Red: Truth; Green: Tree2Tree

example in Neuron
Need for Quantitative Comparison

- Given segmentation, we would like to compare two neurons

- Difference in morphology can provide insight into structure and function

- Morphological variation inside the same functional class reveals effects genetics or environment on specialized function
Neuron Comparison

• Based on discussion with biological collaborators
• We want to compare neuron morphology based on
 – Structure (number of branches, sub-branches, etc.)
 – Position (deviation in 3-space)
 – Hierarchy (with the notion that differences in leaves are less significant than in base branches)

Path2Path

• Paradigm shift – view neuronal tree as collection of continuous paths in 3D space that overlap along their length
A Neuron Model

Path Concurrence and Path Hierarchy

- **Concurrence** function of a path C_p – number of times a point in a path is shared by other paths. Measure of membership and structure.

- **Hierarchy** function of a path H_p – number of bifurcations above a given point in a given path (plus 1).

$N = \{f_1, f_2, f_3\}$
Concurrence and Hierarchy Example

Path Deformation Cost

• For a path pair from 2 neurons
 \[\mathcal{N} = \{f_1, f_2, \ldots, f_n\} \text{ and } \mathcal{M} = \{g_1, g_2, \ldots, g_m\} \]
 \[f_i \in \mathcal{N} \text{ and } g_j \in \mathcal{M} \]
 \[\mathcal{P}_{f_i,g_j} = \int_0^1 \gamma_1(C_{f_i}(t), C_{g_j}(t)) \gamma_2(f_i(t), g_j(t)) \frac{dt}{\lambda + \gamma_3} \]

• One possible cost function:
 \[\mathcal{P}_{f_i,g_j} = \int_0^1 \frac{|C_{f_i}(t) - C_{g_j}(t)||f_i(t) - g_j(t)|}{\lambda + \sqrt{H_{f_i}(t)H_{g_j}(t)}} dt \]
Overall Match

• The sum of minimum path deformation costs for each path in the query neuron \mathcal{N}
 $$\mathcal{N} = \{f_1, f_2, ..., f_n\} \text{ and } \mathcal{M} = \{g_1, g_2, ..., g_m\}$$
 $$f_i \in \mathcal{N} \text{ and } g_j \in \mathcal{M}$$
 $$P_{\mathcal{NM}} = \min_{\sigma} \frac{1}{n} \sum_{1}^{n} P_{f_i \sigma(f_i)}$$

Neuron 3D view
Neuron 3D view

Three matching pairs of Neurons

Three examples of matching pairs (1,2), (3,4), (5,6)
Neuronal Averages

And now...

- On to graph cuts
Graph Cuts

- Basic Approach: partition source, sink with minimum-energy cut

Min Cut = 5

Min-Cut Applied to Images

- Weight edges between pixels
- Minimize $E_{\text{cut}} = \sum_{u \in A, v \in B} w(u, v)$

- Simple weight:
 $w(u, v) = |I(u) - I(v)|^{-1}$
Alternatively...

- Min-Cut implementations exist, but far more effective to approach graph cuts from a different angle...

- Can optimize a general energy functional via max-flow, the dual of min-cut
 - Much more powerful and efficient!

Max-Flow

- Maximize ‘flow’ from source to sink
- Weights=capacities for flow
- Flow into node = flow out of node

![Max Flow Diagram]

Max Flow = 5
Max-Flow/Min-Cut Duality

- With proper algorithm (search tree propagation), max-flow determines same min-cut partition

All paths saturated and no more viable nodes to adopt -- done

Max Flow = 5

Max-Flow Applied to Images

$$E(L) = \lambda \sum_{p \in P} D_p(L_p) + \sum_{\{p,q\} \in N} V_{\{p,q\}}(L_p, L_q)$$

- Minimize E (non-convex)
 - The max-flow partition corresponds to optimal label matrix
- E can be tailored to address various image analysis problems
Data Term

\[E(L) = \lambda \sum_{p \in P} D_p(L_p) + \sum_{(p,q) \in N} V_{(p,q)}(L_p, L_q) \]

- Penalty function based on intensity of current pixel \(p \)

Data Term (cont’d)

\[E(L) = \lambda \sum_{p \in P} D_p(L_p) + \sum_{(p,q) \in N} V_{(p,q)}(L_p, L_q) \]

- Example penalty function

\[D_p(L_p) = -\log(Pr(L_p)) \]

- Example \(Pr \): cluster image intensities, define \(Pr() \) as normalized distance from intensity of pixel \(p \) to center of cluster \(I \)
Region Term

\[E(L) = \lambda \sum_{p \in P} D_p(L_p) + \sum_{(p,q) \in N} V_{\{p,q\}}(L_p, L_q) \]

- Enforces spatial coherence
- Given a neighborhood \(N \) around pixel \(p \), \(V_{\{p,q\}}(L_p, L_q) \) penalizes dissimilarity between pixels \(p \) and \(q \) if they are assigned the same label
- Example \(V \): Sobel magnitude

Why not just use clustering labels?

- Spatial coherence

\- example in GrCuts
Optimizing E

See:

- We recommend: http://www.csd.uwo.ca/~olga/code.html

END

- The graph theoretic approach:
 - Neuron segmentation by Tree2Tree
 - Neuron matching using Path2Path

- Graph cuts provide a nice framework for biological segmentation
Appendix: Alpha-Beta Graph Pruning

For connected components C_i and C_j

- $d_{ij} =$ distance metric between C_i and C_j
- $W(C_i) =$ weight of node C_i
 - Length of medial tree of C_i

Original Tree = M_o
Pruned Tree = M_p

$M_p =$ Largest subtree of M_o such that

$$\frac{\sum_{C_i \in M_p} W(C_i)}{\sum_{C_i \in M_o} W(C_i)} \geq \alpha \quad \text{and} \quad \frac{\sum_{d_{ij} \in M_p} (d_{ij})}{\sum_{d_{ij} \in M_o} (d_{ij})} \leq \beta$$

Alpha: determined by percentage of clutter
Beta: determined by maximum linking distance

Match Path 1, Neuron N to Path 3, Neuron M

$N =$ \{ f_1,f_2,f_3,f_4 \} \quad $M =$ \{ g_1,g_2,g_3,g_4,g_5 \}

$C_{f_i}(t)$
$H_{f_i}(t)$
$C_{g_5}(t)$
$H_{g_5}(t)$
Early Results

<table>
<thead>
<tr>
<th>Neuron#</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>64.11</td>
<td>174.92</td>
<td>120.68</td>
<td>162.74</td>
<td>245.58</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>149.67</td>
<td>145.90</td>
<td>159.17</td>
<td>189.72</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>61.41</td>
<td>190.99</td>
<td>348.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>257.97</td>
<td>385.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>96.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dataset for Initial Prototype

<table>
<thead>
<tr>
<th>Neuron</th>
<th>Archive</th>
<th>Animal</th>
<th>Brain Region</th>
<th>Cell Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Allman</td>
<td>Human</td>
<td>Cerebral Cortex</td>
<td>Pyramidal</td>
</tr>
<tr>
<td>2</td>
<td>Allman</td>
<td>Human</td>
<td>Cerebral Cortex</td>
<td>Pyramidal</td>
</tr>
<tr>
<td>3</td>
<td>Claiborne</td>
<td>Rat</td>
<td>Hippocampus</td>
<td>Granule</td>
</tr>
<tr>
<td>4</td>
<td>Claiborne</td>
<td>Rat</td>
<td>Hippocampus</td>
<td>Granule</td>
</tr>
<tr>
<td>5</td>
<td>Cameron</td>
<td>Cat</td>
<td>Spinal Cord</td>
<td>Motor</td>
</tr>
<tr>
<td>6</td>
<td>Cameron</td>
<td>Cat</td>
<td>Spinal Cord</td>
<td>Motor</td>
</tr>
</tbody>
</table>