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Constraining Active Contour Evolution
via Lie Groups of Transformation
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Abstract—We present a novel approach to constraining the
evolution of active contours used in image analysis. The proposed
approach constrains the final curve obtained at convergence of
curve evolution to be related to the initial curve from which evo-
lution begins through an element of a desired Lie group of plane
transformations. Constraining curve evolution in such a way is
important in numerous tracking applications where the contour
being tracked in a certain frame is known to be related to the
contour in the previous frame through a geometric transformation
such as translation, rotation, or affine transformation, for example.
It is also of importance in segmentation applications where the
region to be segmented is known up to a geometric transformation.
Our approach is based on suitably modifying the Euler-Lagrange
descent equations by using the correspondence between Lie groups
of plane actions and their Lie algebras of infinitesimal generators,
and thereby ensures that curve evolution takes place on an orbit of
the chosen transformation group while remaining a descent equa-
tion of the original functional. The main advantage of our approach
is that it does not necessitate any knowledge of nor any modification
to the original curve functional and is extremely straightforward to
implement. Our approach therefore stands in sharp contrast to
other approaches where the curve functional is modified by the
addition of geometric penalty terms. We illustrate our algorithm
on numerous real and synthetic examples.

Index Terms—Active contours, curve evolution equations, Lie
groups, tracking.

I. INTRODUCTION

THIS paper addresses the problem of curve evolution,
with applications to tracking and segmentation in image

sequences [11]–[13], [19]. Curve evolution equations are usu-
ally obtained as Euler-Lagrange descent equations of a curve
functional tailored to a particular appli-
cation [2]. Starting from an initial curve , a curve evolution
equation prescribes the construction of a one-parameter family

of curves (with ) such that the curve
obtained at convergence is a local minimum

of the curve functional. In many applications of interest such
as tracking, there may be a priori knowledge concerning the
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geometric relation between and ; In particular, this a
priori knowledge could dictate that and be related, up to
reparametrization, by an arbitrary transformation
in a certain family of transformations. For example, it may be
known a priori that and should be related by a trans-
lation, or by a Euclidean transformation. Due to image noise
and clutter, however, and depending on the particular curve
functional from which the curve evolution equation is derived,
the curve obtained at convergence of the evolution may not
have the desired geometric relation to the initial curve .

Deformation of shape in a more generalized framework can
be accomplished via region information. Active shape models
are used to recognize shape deformations given the shape model
and in the estimation of shape deformations using a point distri-
bution model [6]. Region based approaches for tracking shapes
in color images are given in [7]. Segmentation and tracking ap-
plications are also demonstrated applying nonlinear shape sta-
tistics using available training data [8].

The question is then how to suitably modify the curve evolu-
tion equation so that the resulting equations remain descent equa-
tions of the original curve functional while simultaneously en-
suring that the curve obtained at convergence has the desired geo-
metric relation to the initial curve. A solution to this problem has
been proposed in [1], whereby the curve functional is extended
by the addition of penalty terms which try to bias the minimum of
the functional toward a curve with the desired geometric proper-
ties. In other words, the original curve functional is changed to

, with penalizing deviations of from
the desired geometry. While such penalty terms can be easily de-
fined for simply parametrized shapes such as circles and ellipses,
it is not clear how to define them for arbitrary planar shapes.
Thus, this approach is feasible only in very restricted cases. Fur-
thermore, even in these cases, it is not clear how the penalty terms
should be weighted in comparison to the original energy func-
tional, that is, how the coefficient should be chosen.

We propose a novel and straightforward solution to the
problem of geometrically constraining curve evolution in the
case where the geometric relation between and is given
by elements of a finite-dimensional Lie group [16] of plane
transformations.1 This is the case with most applications of
curve evolution, with the Lie groups of interest being the group
of translations, the group of rotations, the group of Euclidean
transformations, as well as the group of affine transformations.
This allows us to use the correspondence between Lie groups
and their Lie algebras in order to reduce the original problem
to one of basic linear algebra. The main advantage of our

1It is important to note that the problem we are addressing in this paper is
radically different from the problem of defining group-invariant flows [9], [15],
i.e., flows which commute with elements of particular groups of transformation.
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approach is that it does not necessitate any knowledge of
or modification to the original curve functional from which
the original curve evolution equations were obtained. Rather,
only the curve evolution equation is modified, in a very
straightforward way, all the while ensuring both that the initial
and final curves are related as desired, and that the modified
curve evolution equation remains a descent equation on the
original curve functional. Such a technique has already been
proposed for tracking the long time behavior of dynamical
systems which are known to obey certain symmetries [14].
A related idea also appears in [4], [5], where 3-D structures
are tracked by using the Lie algebra of the Special Euclidean
group in and the Adjoint representation of the group
to transform the model between video frames. The theory
presented in Sections II and III, in conjunction with the results
shown in Section IV, demonstrate the efficacy of the proposed
curve evolution approach.

II. CURVE EVOLUTION EQUATIONS AND

LIE TRANSFORMATION GROUPS

A. Basic Curve Evolution Equations

Consider a smooth functional , where is the
family of smooth closed plane curves
is a compact interval of , and is the arc parameter (not nec-
essarily arc length). We restrict ourselves to functionals of the
form

(1)

where is a smooth function, and (resp. ) denotes the
first (resp. second, ) derivative of with respect to . This
is the general form of the curve functionals most used in image
processing applications [10]. We are interested in finding the
curve (or those curves) in which (locally) minimizes . To
perform this minimization, is embedded in a family
of curves, and this family is constructed so as to satisfy the evo-
lution equation

(2)

where is the initial curve, and where is the func-
tional derivative of with respect to at [2].
is a vector tangent to the space at the point , i.e., an
element of the tangent space . An element of the tangent
space to at a particular curve is given by a smooth
vector field along , that is, by a mapping

. Thus, for each value of the arc parameter of
is a vector in . This allows us to define an inner

product on as follows:

where is the Euclidean inner product on . The tangent
vector is defined as the unique element of
which satisfies the relation

(3)

It follows from (2) and (3) that

by the positive-definiteness of the inner product. As a result
the mapping is monotonically decreasing. Equa-
tion (2) is thus a descent equation, and the family
of curves a minimizing family for the functional . The goal
of constructing such a family is to compute the curve

, which, if it exists, is a critical point, and hopefully
a local minimum, of .

In image processing applications of curve evolution, a
closed plane curve is usually represented by an -tuple

of points , yielding a polygonal
approximation to the desired curve. The space of such

-tuples can then be identified with the finite-dimensional
vector space , and the curve evolution (2) in is replaced
with an evolution equation in

(4)

where the functions are obtained by spatial discretization
of the expression for in (2). Here again, the

-tuple
is a vector tangent to at the point

of , which associates to
the vector . Not surprisingly,

the space of all vectors tangent to at the point
can be identified with as well. Let then

(with for all ); the inner product
on is defined as follows:

The evolution (4) is further discretized temporally as well,
yielding the following discrete evolution equation:

(5)

where is the temporal discretization step.
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B. Group Actions, Orbits, and Infinitesimal Generators

Let be a (finite-dimensional) Lie group of transformations
acting on . We refer the interested reader to [16]–[18] for a
detailed introduction to the theory of Lie groups. Assume acts
on via a smooth map such that

for all , where is the identity element of , and
for all . The action of

on induces an action of on given by the smooth map
, where the curve is defined by

. The orbit of under the action
of is the subset of defined as

The meaning of the orbit is clear: It is the set of all plane
curves obtained by applying all the transformations in to the
curve .

Let now be a smooth curve in
(with arbitrary) with . Let
is an element of the tangent space of at . The smooth
curve in induces a smooth curve

in the orbit of . The vector defined
by the vector field on is thus an
element of the tangent space of the orbit at .
Since is a vector subspace of , and
since is finite-dimensional, is finite-dimensional
as well. Thus, to each there corresponds a unique
vector . Furthermore, the mapping

is linear, and for each , there
exists a such that . Therefore, the tangent
space to at is given by

C. Curve Evolution on Orbits of Lie Transformation Groups

Assume we are given curve evolution (2) corresponding to
the minimization of the functional and assume we know a
priori that the initial curve and the final curve
should be related, up to reparametrization, via a transformation
in ; that is, there exists and a monotonically increasing
diffeomorphism (called a reparametrization of )
such that . The question is how to incorporate
this a priori information in the evolution equation (2) without
assuming any knowledge of the functional ; in other words,
we wish to suitably modify (2) such that the following two re-
quirements are met.

1) should be a decreasing function of , that is,
the resulting evolution equation should remain a descent
equation on the functional .

2) and should be related, up to reparametrization, by
a transformation of the Lie group .

Note that the first requirement guarantees that the modified evo-
lution equation still minimizes the functional and thus con-
tinues to solve the original problem for which the functional

was intended. The second requirement is that lie in the
union of orbits, where the union is taken over all
reparametrizations of . Note in particular that if ,
then the second requirement is met.

Our approach hinges on the following proposition:
Proposition 1: If for all then

for all . Conversely, if is finite dimensional,
then for all implies
for all .

Proof: See Appendix.
Remark 1: The importance of Proposition 1 lies in the

fact that it converts the original difficult problem of verifying
whether or not a curve lies in the orbit of another curve into
a family of tractable problems, each consisting of verifying
whether a given vector lies in a certain vector space.

Remark 2: To use the full force of Proposition 1, we shall as-
sume henceforth that is finite-dimensional. This restricts in no
way the practical applications of the results that follows, since,
as was noted following (4), in all implementations of curve evo-
lution equations, the space of curves can be identified with
for some positive integer , and hence is finite-dimensional.
For simplicity of notation however, we shall use the notation of
(2).

Consider the tangent space to at the curve . Recall
that the tangent space is a finite-dimensional vector
subspace of , for all . Let

be the projection operator defined with respect to the inner
product . We have the following result:

Proposition 2: Let be a smooth functional. Let
be a one-parameter family of smooth closed plane curves

satisfying the evolution equation

(6)

Then

1) , and
2) is a decreasing function of .

Proof: We have for all
, and hence for all ; the

fact that thus follows from Proposition 1. To show
that is a decreasing function of , we write:

Since the projection is defined with respect to the inner
product on , we have

that is,

We thus obtain,

and hence is a decreasing function of .
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The evolution equation (6) fulfills both of the requirements
we had imposed on constraining curve evolution via transfor-
mation groups. The tangent space to the orbit at

is the vector space spanned by the infinitesimal generators of
the group action of at . By virtue of Proposition 2 therefore,
projecting the velocity vector of a curve onto the Lie algebra
of infinitesimal generators of a group action yields an evolution
which minimizes the desired functional while taking place on
the desired orbit. In Section III, we compute for some of the
Lie groups we shall consider.

It is important to note that constraining to evolve on the
orbit of under the action of the Lie group is equivalent
to estimating a one-parameter family such that

for all . Indeed, expressing as ,
the gradient descent equation for can be written:

This is a descent equation in the Lie group itself, and not in
the space of all plane curves. As is finite-dimensional, and is
typically small-dimensional, it can be locally parametrized by
a small number of parameters; the descent equation in then
corresponds to estimating these few parameters which define
the transformation relating and .

III. LIE GROUPS OF PLANE TRANSFORMATIONS

We consider a (discretized) curve to be an -tuple
of points ; an element

of the tangent space to at is then given by an -tuple
of vectors . We also assume given a

one-parameter family of curves evolving according
to (4). This has the advantage of illustrating very concretely
the computation of the projection operator . Recall that
the tangent space is endowed with the following inner
product:

where are ele-
ments of . In what follows, all projection operators are
computed with respect to this inner product.

A. The Group of Plane Translations

The most basic nontrivial group of transformations of the
plane is the group of plane translations. This group is isomor-
phic to , and an element of it acts on by

In this section, we describe how to constrain active contour
evolution equations so that the evolving contour remain on the
orbit, under the group of plane translations, of the initial con-
tour. Let then be this group. Let be

a one-parameter family of with the identity ele-
ment . Then

The tangent space of at is
thus two-dimensional, and spanned by the vectors

Let be a vector tangent to
at ; the projection operator

associated to is given by , where
are such that

is minimized. The necessary conditions

for a minimum easily yield

Thus, in order to constrain evolution equation (4) to evolution on
the orbit of under the group of plane translations, (4) should
be replaced with

and, correspondingly, (5) with

B. The Group of Plane Rotations

In this section, we describe how to constrain active contour
evolution equations so that the evolving contour remain on the
orbit, under the group of plane rotations, of the initial contour.
The group of plane rotations is isomorphic to the circle

, and an element acts on by

Let be a one-parameter family of with the
identity element 0. Then
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The tangent space of at
(with ) is thus one-dimensional, and spanned by
the vector

Let be a vector tangent to
at , with for ; the projection
operator associated to is given
by , where is such that

is minimized. The necessary conditions for a minimum easily
yield

To constrain evolution (2) to evolution on the orbit of under
the group of plane rotations therefore, (4) should be replaced
with

and, correspondingly, (5) with (see first equation at the
bottom of the page) where for

.

C. The Group of Euclidean Plane Transformations

In this section, we describe how to constrain active contour
evolution equations so that the evolving contour remain on the
orbit, under the group of plane Euclidean transformations, of the
initial contour. The group of Euclidean plane transformations
is the semi-direct product of the group of plane rotations and the
group of plane translations, and an element acts
on by

It follows from the above that the tangent space of
at (with ) is three-

dimensional, and spanned by the vectors

Let be a vector tangent to
at , with for ; the projection
operator associated to is given
by , where
are such that

is minimized. An easy calculation shows that are
given by

With in (4) and (5) being written as

for , and with
given as above, constraining evolution (4) to evo-

lution on the orbit of under the group of Euclidean plane
transformations is performed by replacing (4) with

and, correspondingly, (5) with (see second equation at the
bottom of the page).

D. The Group of Affine Plane Transformations

In this section, we describe how to constrain active contour
evolution equations so that the evolving contour remain on
the orbit, under the group of affine plane transformations,
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of the initial contour. The group of affine plane transfor-
mations is the semi-direct product of the group of
invertible two-by-two real matrices and of , and an element

(where ) acts on by

The tangent space of at
(with ) is thus six-dimensional, and spanned by the
vectors

Let be a vector tangent to
at , with for ; the projection
operator associated to is given
by

, where are such that

is minimized. An easy calculation shows that
are given by solving the overdetermined systems

and

With in (4) and (5) being written as

for , and with

given by solving the above linear
overdetermined systems, constraining evolution equation (4) to
evolution on the orbit of under the group of affine plane trans-
formations is performed by replacing (4) with (equation at the
bottom of the page) and (5) with the corresponding temporally
discretized equation, as illustrated in the previous cases.

IV. EXPERIMENTAL RESULTS

In our implementation of curve evolution on orbits of Lie
transformation groups, we adopt the curve functional

(7)

which is of the same form as the functional in (1) (with
) and is similar to the functional proposed in [10]. Whereas

the first integral on the right-hand side of (7) represents the in-
ternal energy of the active contour due to stretching and bending,
the second integral represents the image-dependent (i.e., ex-
ternal) energy of the snake, and the Lagrangian is defined
as the distance of the active contour from the local gradient
maxima of the image function. The positive coefficients and

control the elasticity and stiffness, respectively, of the active
contour. It should be noted that using the Lie group approach,
the active contour becomes less sensitive to the standard active
contour parameters that represent stretching and bending. Al-
though these “smoothness” terms are still retained, the final con-
tour determined by the transformation is not sensitive to minor
variations in the parameters. As such, the contours evolved by
Lie groups of transformation are more robust to parameter se-
lection.

The Euler-Lagrange descent equation corresponding to the
functional (7) is given by

(8)

where denotes the fourth derivative of with respect to the
arc parameter . Spatial and temporal discretizations of (8) yield
a representation of the curve as a finite ordered set of points

in , and yield an evolution equation of the form

(9)

where the superscript denotes the iteration index (see (5)). As-
suming a temporal discretization step of , the initial curve
is thus represented by the ordered set of points , while the
curve , corresponding to iteration of the evolution, is rep-
resented by the ordered set .

A. Synthetic Results

We first demonstrate the basic concept of active contour evo-
lution on Lie group orbits through a set of synthetic images.
The synthetic experiments are followed by experiments on real
image sequences. We adopt the discretized version (9) of curve
evolution equation (8) as our benchmark, and we shall call it
unconstrained curve evolution. In all experiments, the energy
functional parameters and are assigned values 0.01 and 0,
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Fig. 1. Capturing an ellipse: (a) initial contour; (b) evolution on translation
group orbit; (c) initial contour; (d) evolution on affine group orbit; (e) uncon-
strained evolution for capturing noisy ellipse; (f) evolution on affine group orbit
for capturing noisy ellipse.

respectively. In all the images shown, a red thin contour rep-
resents either the initial curve or the intermediate curves

(shown every 50 iterations, i.e., for
), while a thick green contour represents the con-

tour at convergence . The stopping criterion we have used
is as follows: Curve evolution stops whenever there is less than
one pixel maximum displacement between the current and the
previous contours at all contour points.

Fig. 1(a) is constructed from the binary image of a dark el-
lipse (the target) on a uniform white background by the addition
of zero-mean white Gaussian noise of normalized variance .01.
The thin red contour represents the initial position of the snake

. Clearly, the initial contour and the target ellipse differ
only by a translation; hence, constraining the snake to evolve
on the orbit of under the group of translations should yield
a contour at convergence that coincides with the target el-
lipse. The result of this constrained evolution is as expected and
is shown in Fig. 1(b). Note that convergence is achieved even if
the initial axes are different in length. Consider now Fig. 1(c);
the underlying image is similar to that in Fig. 1(b), but the ini-
tial contour is now defined so as to be unrelated to the target
ellipse by a mere translation. Thus, constraining the snake to
evolve on the orbit of under the group of translations would
not yield a contour at convergence that coincides with the
target ellipse. However, being an ellipse as well, constraining

Fig. 2. (a) Evolution on affine group orbit for capturing noisy ellipse;
(b) evolution on Euclidean group orbit for capturing noisy ellipse; (c) evolution
on affine group orbit for capturing noisy rectangle; (d) unconstrained evolution
for capturing noisy rectangle; (e) evolution on affine group orbit for capturing
paddle; (f) unconstrained evolution for capturing paddle.

the snake to evolve on the orbit of under the group of
affine transformation allows to coincide with the target el-
lipse. This is shown in Fig. 1(d). Note that in Fig. 1(b) [resp.
1(d)] the intermediate contours are all related to the initial
contour by a translation (resp. affine transformation), consis-
tent with evolution on a transformation group orbit.

In Fig. 1(e) and (f), the target ellipse is itself randomly de-
formed while preserving its rough elliptic shape. Fig. 1(e) shows
the result of unconstrained snake evolution, yielding a contour

at convergence that has a very irregular shape. Constraining
snake evolution to lie on the orbit of under the affine group,
however, yields an elliptic contour at convergence, as can be
seen in Fig. 1(f). Clearly, constraining contour evolution to take
place on a transformation group orbit has a regularizing effect
on the contour.

Fig. 2(a) shows the result of snake evolution on the orbit of
under the affine group, as in Fig. 1(f) and with a similar under-
lying image, but with different initial contour . Fig. 2(b), on
the other hand, shows the result of snake evolution on the orbit of

under the Euclidean group. In both cases, the contour at
convergence captures the target noisy ellipse while retaining its
elliptic shape. In Fig. 2(c) and (d) the underlying image is con-
structed just as in Fig. 1 except that the target is now a dark rec-
tangle which has been randomly distorted. Fig. 2(c) shows the
result of constrained snake evolution on the affine group orbit
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Fig. 3. Results of in vivo cell tracking by constrained snake evolution on affine group orbit: (a) initial contour in frame 0; (b) frame 1; (c) frame 3; (d) frame 5;
(e) frame 10; (f) frame 15; (g) frame 20; (h) frame 25.

Fig. 4. Results of in vivo cell tracking by unconstrained snake evolution: (a) initial contour in frame 0; (b) frame 1; (c) frame 3; (d) frame 5; (e) frame 10; (f) frame
15; (g) frame 20; (h) frame 25.

of an initial contour which is itself a rectangle larger than the
target rectangle. As can be seen in that same figure, the rectan-
gular shape of the target noisy rectangle is perfectly captured by
the contour at convergence. Unconstrained snake evolution
on a similar image and starting from a similar initial contour

yields a contour at convergence which is not rectangular
anymore, as can be seen in Fig. 2(d).

To further demonstrate the regularizing effect of contour
evolution on transformation group orbits, we have used video
frames from a table tennis sequence. The frame to frame co-
herence that is required for tracking is maintained through our
proposed algorithm, as is shown in Fig. 2(e): Here, the contour

at convergence is constrained to lie on the orbit of the initial
contour under the affine group. Unconstrained contour
evolution [from the same initial contour as in Fig. 2(e)], on
the other hand, yields the result in Fig. 2(f); there, the contour
at convergence is distorted, and the distortion worsens as we
progress through the sequence. We shall clarify this further
when we discuss the tracking examples below.

B. Tracking Results

We use three different sequences from three different applica-
tion areas to demonstrate the usefulness of constraining snake
evolution to transformation group orbits. In each of these se-
quences, tracking is done over 25 frames, and in each frame
(except frame zero), the initial contour from which snake evo-
lution starts is the contour at convergence of snake evolution of
the preceding frame.

The first tracking application is that of tracking a white blood
cell in vivo. Fig. 3 shows the results of tracking using affine

group constrained snake evolution, while Fig. 4 shows the re-
sults of tracking using unconstrained snake evolution. Not only
does our proposed algorithm allow the shape to be captured
properly, but the detection of the shape is consistent with the
direction of flow within the blood vessel as well. The result
of tracking using unconstrained snake evolution violates the
known circular shape of the leukocyte and yields boundary lo-
calization error. Figs. 3(a) and 4(a) show the initial contours in
frame 0, while Figs. 3(b)–(h) and 4(b)–(h) depict the tracking
results in frames 1, 3, 5, 10, 15, 20, and 25, respectively.

For the table tennis sequence, in which a paddle is tracked,
the results of affine group constrained snake evolution and un-
constrained snake evolution are shown in Figs. 5 and 6, respec-
tively. Fig. 5(a) and (b) depict the initial contours in frame 0,
while Figs. 5(b)–(g) and 6(b)–(g) show the tracking results in
frames 1, 5, 10, 15, 20, and 25, respectively. Fig. 6(g) clearly
shows that a simple snake with no additional constraint clearly
loses the paddle shape while tracking. The errors in capturing
the shape in previous frames are compounded and ultimately
force the active contour to drift away from the true boundary.
For our proposed algorithm, with the special choice of the affine
group, shape fidelity is maintained for the entire 25 frames under
observation.

The final image sequence gives an example of tracking of
a tank under difficult imaging conditions from infrared video.
Figs. 7 and 8 show the results of affine group constrained snake
evolution and unconstrained snake evolution, respectively. As
in previous examples, Figs. 7(a) and 8(a) show the initial snake
in frame 0, while Figs. 7(b)–(g) and 8(b)–(g) show the results
of tracking in frames 1, 5, 10, 15, 20, and 25. Note that the
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Fig. 5. Results of tracking paddle by constrained snake evolution on affine group orbit: (a) initial contour in frame 0; (b) frame 1; (c) frame 5; (d) frame 10;
(e) frame 15; (f) frame 20; (g) frame 25.

Fig. 6. Results of tracking paddle by unconstrained snake evolution: (a) initial contour in frame 0; (b) frame 1; (c) frame 5; (d) frame 10; (e) frame 15; (f) frame 20;
(g) frame 25.

Fig. 7. Results of tracking tank in clutter by constrained snake evolution on affine group orbit: (a) initial contour in frame 0; (b) frame 0; (c) frame 5; (d) frame 10;
(e) frame 15; (f) frame 20; (g) frame 25.

Fig. 8. Results of tracking tank in clutter by unconstrained snake evolution: (a) initial contour in frame 0; (b) frame 0; (c) frame 5; (d) frame 10; (e) frame 15;
(f) frame 20; (g) frame 25.
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TABLE I
SEGMENTATION ERROR BETWEEN ACTIVE CONTOUR AT CONVERGENCE AND THE GROUND TRUTH. POSITIVE AND NEGATIVE QUANTITIES REPRESENT OVER AND

UNDER SEGMENTATION, RESPECTIVELY

unconstrained snake responds to spurious details and unreli-
able image clutter; the constrained snake, on the other hand,
preserves its hexagonal shape throughout tracking, providing
a target boundary that could be utilized for automatic target
recognition.

For the three tracking examples, we provide numerical data
to substantiate the validation of active contour evolution on the
affine group orbit. Using manually segmented boundaries, we
have computed the segmentation error for each frame for both
the unconstrained active contour evolution and the evolution on
the affine group orbit (Table I). A segmentation error of 0%
means exact agreement with the “ground truth.” Over-segmen-
tation (under-segmentation) occurs when the detected segment
is bigger (smaller) than the segment in the ground truth. The seg-
mentation error is expressed as a percentage of excess or less
number of pixels with respect to the size of the ground truth
segment.

V. CONCLUSION

In this paper, we have presented a novel approach to constrain
curve evolution equations to orbits of particular Lie groups of
transformation. Such constraints are important in numerous ap-
plications of curve evolution where the preservation of certain
geometric properties of curves is desired. The approach we have
presented makes use of the relation between the group action
and the infinitesimal generators of this action. In this way, the
original problem of maintaining certain geometrical properties
of the curve during its evolution is translated into a straightfor-
ward linear algebraic problem. The main advantage of the ap-
proach we have presented is that only the curve evolution equa-
tion is modified, in a very straightforward way, and no knowledge
of or modification to the curve functional from which the curve
evolution equation was derived, is assumed. The synthetic image
segmentation results demonstrate the shape-preserving noise-re-
silient properties of the active contour moving on the orbits of
Lie groups of transformation. Extending the results to tracking
objects in a video sequence, we find that the novel active contour
implementation is effective in tracking objects that move and dis-
tort according to Lie groups of transformation. Thus, for tracking
the same object in a video sequence, the assumptions of evolution
on orbits of Lie groups of transformation are well motivated and
powerful. In contrast, using the traditional active contour evo-
lution equations leads to detection of objects of arbitrary shape,
which may lead to errors during tracking.

APPENDIX

In this Appendix, we provide a Proof of Proposition 1. As-
sume then that for all . Then

for all as well. implies there
exists such that , and hence

, by virtue of the asso-
ciativity of the group action and the fact that is a group. Thus

and the statement is
proved. Conversely, and assuming is finite-dimensional, as-
sume for all . Identifying with

for some positive integer can be considered as a point
in . Assuming the Lie group has dimension and that it
acts regularly at is an -dimensional vector sub-
space of for all in a small neighborhood of ,
yielding a field of -dimensional subspaces in
a neighborhood of , for all . Since these subspaces are
spanned by the infinitesimal generators of the Lie group action,
and since these infinitesimal generators form a Lie algebra of
vector fields, the field is completely integrable
by virtue of Frobenius’ theorem [18]. It is then possible to find
local coordinates in in a neighborhood
of for which the orbit in that neighborhood is given by

. It then follows
from for all , that
for small enough. By piecing together local coordinate
charts, we deduce the result for .
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