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Automatic Active Model Initialization
via Poisson Inverse Gradient

Bing Li, Student Member, IEEE, and Scott T. Acton, Senior Member, IEEE

Abstract—Active models have been widely used in image pro-
cessing applications. A crucial stage that affects the ultimate active
model performance is initialization. This paper proposes a novel
automatic initialization approach for parametric active models
in both 2-D and 3-D. The PIG initialization method exploits a
novel technique that essentially estimates the external energy Þeld
from the external force Þeld and determines the most likely initial
segmentation. Examples and comparisons with two state-of-the-
art automatic initialization methods are presented to illustrate
the advantages of this innovation, including the ability to choose
the number of active models deployed, rapid convergence, ac-
commodation of broken edges, superior noise robustness, and
segmentation accuracy.

Index Terms—Active contours, active models, active surfaces,
deformable models, deformable surfaces, initialization, PoissonÕs
equation, Poisson inverse gradient, snakes.

I. INTRODUCTION

I N the last two decades, active models [1], or deformable
models [2], have emerged as a popular and powerful tool

for image segmentation [3]�[8] and object tracking [9]�[13].
Although there are several existing versions of active models
[14]�[17], the most widely used active models include active
contours (also known as snakes or deformable contours) [1]
and active surfaces (also known as deformable surfaces) [2].
The active models deform on the image domain and capture
a desired feature by minimizing a model energy functional
subject to certain constraints. The model energy functional
usually contains two terms: a model internal energy, which
constrains the smoothness and tautness of the model, and a
model external energy, which attracts the elastic model to
the features of interest.

Although extensive research has been completed to improve
the active model performance [3], [18], [19], the subject of ac-
tive model initialization has received considerably less atten-
tion. The initialization is a critical factor in the ultimate solu-
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tion quality of the active model, because a poor initialized ac-
tive model may become stuck at local energy minimum and fails
to capture the features of interest. The most popular and con-
venient way is to initialize the active models is by employing
some naïve geometric model such as a circle in 2-D or sphere
in 3-D. The major drawback of this simple initialization ap-
proach is that the active model may need a large number of
iterations to converge or may converge to clutter away from
the desired target. An alternative is manual initialization via
manual selection of initial points. Even though manual initial-
ization is effective, manually drawing a complex 3-D surface,
for example, is an extremely dif�cult and error-prone process.
Approaches have been published to simplify the manual initial-
ization process [20]�[22], whereas other researchers proposed
the underlying external energy �eld from the external force
�eld, Poisson inverse gradient (PIG), in Section III. Based on
the estimated external energy �eld, the automatic initialization
methods for single and multiple active models are detailed in
Section IV. All equations are given for 3-D images, from which
the analogous 2-D equations can be formulated accordingly.
Several promising properties of this new initialization method
are demonstrated by a set of examples and comparisons in
Section V. The salient properties of PIG initialization include
robustness to noise, accommodation of broken edges and mul-
tiple objects, explicit choice of the number of active models
deployed, improved segmentation accuracy and rapid conver-
gence to features of interest. Finally, we draw conclusions in
Section VI.

II. B

ACKGROUND

A. Active Surfaces

An active surface is de�ned by mapping a bivariate parameter
domain into , where a surface
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and contours are represented by connected discrete vertices.
Therefore, given the isovalue , the model energy of the
-th isomodel out of all isomodels is calculated by

(22)

where denotes theth face of the triangular mesh, de-
notes the area of , and denotes the number of faces of the
th isomodel . is the maximum

estimated external energy to assure the model external energy is
negative.

The model internal energy is de�ned as

(23)

the calculation of which is application-dependent and can be
found in the Appendix. To measure the internal energy on a
discrete triangular mesh for active surfaces is a very compli-
cated and computational expensive process, all the derivations
of which can be found in [52] and [53]. For isolines, (22) and
(23) also apply, where denotes theth edge of the connected
contour, denotes the length of , and denotes the
number of edges of theth isomodel . The internal energy
calculation for active contours is straightforward using a�nite
difference approximation to estimate the�rst and second deriva-
tives.

The minimum energy of all isomodels for isovalue is

(24)

and the corresponding isomodel is denoted by. Note that a
special case occurs when , i.e., the internal energy
can be ignored. Then

(25)

which implies that the largest isomodel has the lowest model
external energy given isovalue . Note that in
(25). Given a set of prede�ned isovalues , the isomodel with
overall minimum model energy is chosen to the initial model. In

2-D, for example an isoline of minimum energy is selected as the
initial coarse segmentation. This isoline has two desirable prop-
erties that make it an attractive candidate for initialization�(1)
low external energy as computed by the PIG method and (2) in-
herent regularity due to the smoothing of the Poisson equation.
Of course, this initialization could be thwarted by intense clutter
and problems (gaps) in edge detection.

To summarize, the automaticsingle model initializationpro-
cedure is implemented in the following steps.

i.1. Normalize the force�eld such that the magnitude of
all the vectors in the force�eld is set to 1.
i.2. Normalize the edge mapto the range [0, 1].
i.3. Calculate the estimated external energy�eld from
the external force�eld with Dirichlet boundary condi-
tions computed from edge mapusing (19) and (21).
i.4. De�ne isovalues

.
i.5. For each isovalue , calculate the minimum model
energy of isomodel using (24).
i.6. The isomodel of isovalue yielding the overall
minimum model energy is chosen to be the optimal initial
model, i.e., .

where denotes the maximum gap between edge fragments,
and denotes the minimum distance between the edge
and noise/clutter. This automatic initialization method can ac-
commodate broken edges, which is exempli�ed in Fig. 4. The
isoline with isovalue is roughly pixels away from the edge.
Hence, isolines with isovalues less than are not properly
connected, whereas isolines with isovalues larger thanare
over-connected. If the selected isovaluesdo not belong to

, the isolines might pass through the gaps between
fragments, or may pass the noise/clutter.

This initialization method incorporates internal energy when
selecting isolines in steps i.5 and i.6. Therefore, active models
with different internal energy weightings will have different ini-
tial models. Additional constraints may be applied to the iso-
model selection steps i.5 and i.6 to re�ne the initialization, such
as the selected isomodel must be a closed surface or contour.
Different internal energy formulations, such as the energy func-
tional for the shape, size, and position constraints [10], can be
employed in (22) to improve the selection of isomodels.

C. Efficient Implementation

The most computationally expensive part of the automatic
PIG initialization process is the PIG calculation (step i.3),
because (19) involves solving a large linear system. There are
many methods to implement the PIG calculation ef�ciently
without sacri�cing the quality of the initialized model. The�rst
and most straightforward way is if is consisted of several
separate regions, each region can be treated as a linear system
and calculated separately to reduce the system complexity. For
example, it is more ef�cient to treat the twelve separate regions
in Fig. 2(b) as twelve separate linear systems instead of a single
large linear system. This method does not modify the estimated
external energy�eld.

Subsampling, the second method, is often necessary (with
current PC implementations) in order to calculate the estimated
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Fig. 3. Estimated external energy�eld with isolines of the VFC�eld using
(a) the subsampled (by a factor of 2 in each dimension) image, and (b) the left
half and right half of Fig. 2(a).

external energy�eld of 3-D external forces with limited com-
putational resources. The 3-D image, or the volume, can be
subsampled to a lower resolution without distorting features of
interest, which can considerably reduce the size of the linear
system in (19). Although the estimated external energy�eld
after subsampling is not as accurate, the selected initial model
should not be signi�cantly affected. If the system is still too
large to be computed, the last method available is to divide the
volume into several sub-volumes, which are calculated sepa-
rately. Because of the incompleteness of boundary conditions
in each sub-volume, this subdivision method will introduce
aliasing between sub-volumes. The two approaches applied
to 2-D images are demonstrated in Fig. 3, which shows that
subsampling does not signi�cantly alter the initialization, and
that image division may cause aliasing between the sub-images,
as compared to Fig. 2(f). Although the aliasing effect leads to
discontinuity, the isolines close to features of interest still are
good approximations and could be used for initialization.

D. Initialization for Multiple Active Models

This automatic initialization process can be easily extended
for initializing multiple active models simultaneously. In this
section, we proposed two multiple model initialization proce-
dures by modifying steps i.5 and i.6 and incorporating prior in-
formation.

The�rst improved initialization method, termed-model ini-
tialization, is to select isomodels with lowest model energy for
each isovalue, when there areobjects to be segmented in the
image. This method is useful in segmenting images with a�xed
number of objects, such as medical images where the physical
structure is well known. The single model initialization method
proposed in Section 6.2.1 can be considered as a special case
of -model initialization with , and is termed 1-model
initialization. The automatic -model initialization procedure is
implemented in the following steps.

ii.1-4. Same as i.1-4.
ii.5. For each isovalue , calculate the -model energy
of the isomodels with lowest energy

(26)

where denotes the indices of the isomodels with
lowest energy for isovalue . if

.
ii.6. The isomodels of the isovalue

yielding the overall minimum -model energy
are selected to initialize active models such that

.
Another modi�ed initialization method for multiple models,

termedconstrained initialization, incorporates size and shape
constraints in the internal energy and�lters the isomodels with
the model energy. When prior size and shape information of
the objects of interest is available, constrained initialization is
similar to -model initialization except replacing the set of
isomodels with lowest energy in step ii.5 and ii.6 by the
collection of isomodels with low enough model energy.

V. RESULTS AND ANALYSIS

In this section, the proposed PIG initialization method is com-
pared with the center of divergence (CoD) method [23] and the
force�eld segmentation (FFS) method [26]. These two methods
represent the competing automatic solutions for active contour
initialization in the literature. All methods are implemented in
MATLAB 7.0. In each experiment, the active model parameters,
including the edge map, the force�eld, smoothness parameters,
and the convergence criteria, are identical for the three methods.
Here,convergenceis de�ned as the iteration in which the max-
imum movement across all vertices is less than one half pixel
for three consecutive iterations. Further, the termground truth
refers to the active model result with high-quality manual initial-
ization. The CoD method needs no extra parameter, and the FFS
method requires a threshold to generate binary edge map, which
is set equal to in (21). We apply the Canny edge detector [29]
for 2-D examples and the Monga�Deriche edge detector [30] for
3-D examples to obtain edge maps. All experiments employ the
VFC �eld as the external force�eld due to its superior noise ro-
bustness [19], [32], except in Section V.C where GVF [18] is
applied.

A. Sensitivity to Broken Edges

We consider a thin 2-D curved region shown in Fig. 4(a) to
evaluate the impact of broken edges on the various initialization
methods. With this high quality initialization using the PIG
single model initialization method, the VFC active contour
successfully captures the broken C-shape edges in only 12
iterations, shown in Fig. 4(f). The CoD method initializes
11 active contours, most of which vanish while a single
contour captures the inner portion, as shown in Fig. 4(d).
The CoD method fails to capture the edges, and requires 70
iterations to converge. The FFS method also fails to initialize
active contours correctly in these broken edge examples,
since the FFS method treats each connected component in
the edge map as a single object and one active contour is
formed for each edge fragment. Fig. 4(e)�(f) illustrates that
FFS is incapable of accommodating broken edges, whereas
the proposed PIG method can handle these scenarios. The
�rst row of Table II summarizes the test results. The PIG
method outperforms the other two methods for this example
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TABLE II
PERFORMANCE SUMMARY FOR THE CENTER OF DIVERGENCE (COD) METHOD, THE

FORCE FIELD SEGMENTATION (FFS) METHOD, AND THE PROPOSED PIG METHOD

Fig. 4. (a) Broken edges for a thin, curved region. (b) The VFC force
�eld and (c) corresponding estimated external energy�eld overlapped
with isolines. The initial (red dashed lines) and�nal (green solid lines)
active contours using (d) the CoD method, (e) the FFS method, and
(f) the PIG single model initialization method.

in terms of correct number of models initialized, iterations
needed for convergence, computing time, and segmentation
accuracy.

Additionally, we generate numerous geometric shapes of in-
creasing gap width between edge fragments shown in Fig. 5 to
evaluate the impact of broken edges on the various initialization
methods. The segmentation accuracy is measured by the root
mean squared error (RMSE) between the active contour result
and the ground truth. The results using the CoD method are cal-
culated after region merging.

Fig. 5. RMSE of active contours using the CoD method, the FFS method and
the PIG method for shapes with increasing gap width between edge fragments
as shown below the plot.

In these synthetic tests, the CoD and PIG methods both suc-
cessfully capture the objects with broken edges, whereas the
FFS method fails when the gap width is larger than 2 pixels.
Because the FFS method always initializes one model for each
connected component in the edge map, two models initialized
by the FFS method collapse to the edge fragments in a few it-
erations. As may be observed in Table II, the PIG method re-
quires only 30 iterations on average to converge, which is much
less than the 100+ iterations required by the other two methods.
Note that each iteration has exactly the same settings and asso-
ciated expense for all three methods.
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