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The spectrum of the convolution of two continuous functions can be determined as the
continuous Fourier transform of the cross-correlation function. The same can be said
about the spectrum of the convolution of two infinite discrete sequences, which can be
determined as the discrete time Fourier transform of the cross-correlation function of
the two sequences. In current digital signal processing, the spectrum of the continuous
Fourier transform and the discrete time Fourier transform are approximately determined
by numerical integration or by densely taking the discrete Fourier transform. It has been
shown that all three transforms share many analogous properties. In this paper we will
show another useful property of determining the spectrum terms of the convolution
of two finite length sequences by determining the discrete Fourier transform of the
modified cross-correlation function. In addition, two properties of the magnitude terms
of orthogonal wavelet scaling functions are developed. These properties are used as
constraints for an exhaustive search to determine a robust lower bound on conjoint
localization of orthogonal scaling functions.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Kay and Marple in [1] state that “estimation of the power spectral density, or simply the spectrum, of discretely sampled
deterministic and stochastic processes is usually based on procedures employing the fast Fourier transform (FFT).” Some
typical methods for estimating the spectrum employ the discrete Fourier transform (DFT) of the autocorrelation function.
These methods offer varying degrees of time-frequency resolutions. This paper does not offer an argument of one spectrum
estimate over the others. Rather, this paper provides a method to determine the spectral terms of a finite sequence by
taking the (DFT) of the modified autocorrelation sequence. This is a development in a systematic and generalized approach
in which the mathematical foundations are made for the cross-correlation sequence.

It is well known that for any two functions x, y : R → C in which their continuous Fourier transform (CFT) exists that

rx,y(τ )
CFT←→ Rx,y(ω) = X(ω)Y ∗(ω), (1)

where the continuous time cross-correlation function rx,y(τ ) is defined as
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rx,y(τ ) =
∞∫

−∞
x(t + τ )y∗(t)dt

for all τ ∈ R and the CFT is defined as

X(ω) =
∞∫

−∞
x(t)e− jωt dt.

A similar relation holds for any two infinite discrete sequences x, y : Z → C in which their discrete time Fourier time
transform (DTFT) exists. It is easily shown with a smart change of variable that

rx,y(m)
DTFT←→ Rx,y

(
e jω) = X

(
e jω)

Y ∗(e jω)
, (2)

where the discrete time cross-correlation function rx,y(m) is defined as

rx,y(m) =
∞∑

n=−∞
x(n + m)y∗(n) (3)

for all m ∈ Z and the DTFT is defined as

X
(
e jω) =

∞∑
m=−∞

x(m)e− jωm.

For any two finite and equal length-N sequences, Cooley, Lewis, and Welch showed that the cross-correlation modulo N
of the two sequences and the product of their discrete Fourier transform (DFT) are DFT pairs. This is stated in the following
theorem and proved in [2].

Theorem 1. If x[n] and y[n] are finite-length N sequences such that x[n] DFT←→ X[k] and y[n] DFT←→ Y [k], then

r̂x,y[m] =
N−1∑
n=0

x
[
(n + m)mod N

]
y∗[n] DFT←→ X[k]Y ∗[k], (4)

for m = 0,1,2, . . . , N − 1 and the DFT is defined as

X[k] =
N−1∑
n=0

x[n]e− j 2π
N nk.

In this paper, we extend the work of Cooley, Lewis, and Welch and expand the scope of Theorem 1. The circular discrete
finite relation given in Theorem 1: circular cross-correlation of two discrete and finite sequences and the multiplication of
the DFT of the first sequence with the complex conjugate of the DFT of the second sequence; is analogous to the discrete
infinite relations given in Eq. (2): the cross-correlation of the discrete and infinite sequences and the multiplication of the
DTFT of the first sequence with the complex conjugate of the DTFT of the second sequence. Both relations are analogous to
the continuous time cross correlation relations given in Eq. (1). The analogy of these relations are important and coincide
with current sampling theory.

The next two sections define a modified cross-correlation function and prove relations similar to the three given in this
section. The last relation is used to show two properties of the spectral terms of orthogonal scaling functions. The two
properties of the spectral terms of orthogonal scaling functions follow directly from a necessary property of the autocor-
relation of the orthogonal scaling functions that even nonzero lags must equal zero. In Section 4 the proven properties of
the magnitude terms of orthogonal scaling functions are used as constraints in an exhaustive search to determine a robust
lower bound on conjoint localization. The last section concludes the paper with a summary.

2. Modified cross-correlation functions

Van Den Bos in [3] argues that DFT data sequences do not have to be defined circularly. In [3], he uses modulo arith-
metic to define the finite sequence’s indices which for all practical purpose is defining the sequence in a circular manner.
Nonetheless, his paper does show some very useful and important properties of the DFT. This paper takes a different ap-
proach and infinitely extend a finite sequence by zeros, as opposed to periodically extending, i.e., circularly extending. We
develop relations similar to Eqs. (1), (2), and (4) for finite-length N , complex-valued sequences.

Let x, y : [0, N − 1] → C be any two complex-valued sequences. Parentheses around the index will denote that the finite-
length N sequence is infinitely extend by zero padding, i.e.,
Please cite this article in press as: P.C. Tay et al., Properties of the magnitude terms of orthogonal scaling functions, Digital Signal Process. (2010),
doi:10.1016/j.dsp.2009.12.013
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x(n) =
{

x[n], n ∈ [0, N − 1],
0, otherwise.

(5)

The cross-correlation sequence rx,y(m) is defined in Eq. (3). Since rx,y(m) = 0 for m < −N + 1 or m > N − 1, this infinite
cross-correlation sequence may be truncated to a length 2N − 1 sequence.

An interesting relation can be proven when the cross-correlation function is defined as follows:

ŝx,y[m] =
{ rx,y(0), m = 0,

rx,y(m) + r∗
x,y(−m), m ∈ [1, N − 1]. (6)

With this formulation, the only the real part of the DFT of ŝx,y[m] is equal to the real part of the product of the DFT of the
first sequence and the complex conjugate of the DFT of the second sequence. If the two sequences are equal, x[n] = y[n] for
all n ∈ [0, N − 1], then the DFT of ŝx,y[m] is equal to the squared magnitude terms of x[n].

Theorem 2. Let ŝx,y[m] DFT←→ Ŝx,y[k] where ŝx,y[m] is defined in Eq. (6). Then

Re
[

Ŝx,y[k]] = Re
[

X[k]Y ∗[k]]. (7)

Proof.

Re
[

Ŝx,y[k]] = Re

[
N−1∑
m=0

ŝx,y[m]e− j 2π
N mk

]

= Re

[
N−1∑
m=0

rx,y(m)e− j 2π
N mk

]
+ Re

[
N−1∑
m=1

r∗
x,y(−m)e− j 2π

N mk

]

= Re

[
N−1∑
m=0

rx,y(m)e− j 2π
N mk

]
+ Re

[−N+1∑
m=−1

r∗
x,y(m)e j 2π

N mk

]

= Re

[
N−1∑
m=0

rx,y(m)e− j 2π
N mk

]
+ Re

[−N+1∑
m=−1

rx,y(m)e− j 2π
N mk

]∗

= Re

[
N−1∑

m=−N+1

rx,y(m)e− j 2π
N mk

]

= Re

[
N−1∑

m=−N+1

∞∑
n=−∞

x(n + m)y∗(n)e− j 2π
N mk

]
.

Let l = n + m, the last equation becomes:

= Re

[ ∞∑
n=−∞

N−1+n∑
l=−N+1+n

x(l)y∗(n)e− j 2π
N (l−n)k

]

= Re

[
N−1∑
n=0

y∗[n]e j 2π
N nk

N−1∑
l=0

x[l]e− j 2π
N lk

]
= Re

[
Y ∗[k]X[k]]

= Re
[

X[k]Y ∗[k]]. �
This theorem is useful in showing two properties of the magnitude terms of a scaling functions that belong to orthogonal

quadrature mirror filter banks (QMFs). Before proceeding to the next section, by convention, when the sequence x(n) = y(n)

for all n ∈ Z, we refer to the cross-correlation in Eq. (3) as the autocorrelation sequence.

3. Properties of orthogonal scaling functions

In this section, we introduce two properties of the magnitude terms associated with an orthogonal QMF scaling function.
Let fa , ga , fs , and gs be the lowpass analysis scaling function, highpass analysis wavelet function, lowpass synthesis scaling
function, and highpass synthesis wavelet function, resp., which constitute an orthogonal QMF. It was shown in [4] that the
following property holds:
Please cite this article in press as: P.C. Tay et al., Properties of the magnitude terms of orthogonal scaling functions, Digital Signal Process. (2010),
doi:10.1016/j.dsp.2009.12.013
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∞∑
n=−∞

fa(n + 2m) f ∗
a (n) = δ(m),

where δ(m) is the Kronecker Delta function. This property also holds for the lowpass synthesis scaling function, fs . The
same two properties will also apply to fs . For the sake of brevity and to avoid redundancy, only the results for the lowpass
analysis scaling function, fa will be presented.

For the purposes of this paper, we will only consider fa which are finite response filters (FIR) and unity �2-norm. It is
well known that scaling functions that belong to orthogonal QMF are even length-N filters [4]. The infinite sequence fa(n)

is achieved by infinitely extending fa[n] by zeros as in Eq. (5). The modified autocorrelation function of fa , ŝ fa, fa [m], can be
defined as in Eq. (6). It is easily shown and is well documented that r fa, fa (m) = r∗

fa, fa
(−m). In addition, if fa is real-valued,

then r fa, fa (m) is also real-valued. The modified autocorrelation function of fa is

ŝ fa, fa [m] =
⎧⎨⎩

1 m = 0,

2r fa, fa (m) m = 1,3,5, . . . , N − 1,

0 m = 2,4,6, . . . , N − 2.

(8)

Theorem 3. If fa is real-valued, then

∣∣Fa[k]∣∣2 +
∣∣∣∣Fa

[
N

2
− k

]∣∣∣∣2

= 2. (9)

Proof. Apply Theorems 2 to get∣∣Fa[k]∣∣2 = Re
[

Ŝ fa, fa [k]]
= Re

{
N−1∑
m=0

ŝ fa, fa [m]e− j 2π
N mk

}

= s[0] + Re

{
N−1∑
m=1

ŝ fa, fa [m]e− j 2π
N mk

}

= 1 + Re

[ N−2
2∑

m=0

ŝ fa, fa [2m + 1]e− j 2π
N (2m+1)k

]

= 1 +
N−2

2∑
m=1

ŝ fa, fa [2m + 1] cos

(
2π

N
(2m + 1)k

)
. (10)

Similarly,∣∣∣∣Fa

[
N

2
− k

]∣∣∣∣2

= Re

[
Ŝ fa, fa

[
N

2
− k

]]

= 1 + Re

[ N−2
2∑

m=0

ŝ fa, fa [2m + 1]e− j 2π
N (2m+1)( N

2 −k)

]

= 1 + Re

[ N−2
2∑

m=0

ŝ fa, fa [2m + 1]e− jπ(2m+1)e j 2π
N (2m+1)k

]

= 1 −
N−2

2∑
m=1

ŝ fa, fa [2m + 1] cos

(
2π

N
(2m + 1)k

)
. (11)

Addition of Eqs. (10) and (11) yields Eq. (9). �
Corollary 1. If fa is real-valued and N is divisible by 4, then |Fa[ N

4 ]|2 = 1.

Proof. When k = N
4 , Eq. (9) becomes 2|Fa[ N

4 ]|2 = 2. �

Please cite this article in press as: P.C. Tay et al., Properties of the magnitude terms of orthogonal scaling functions, Digital Signal Process. (2010),
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4. Lower bound on conjoint localization of orthogonal scaling functions

The experimental evidence provide in [5–9] emphasized the relevance of localization in the spatial and localization in the
frequency domains to the biological visual system. It is well known that improved localization in one domain can be offset
by decrease localization in the other domain. This trade off is an example of the Heisenberg–Weyl uncertainty principle
[10,11]. Measures to quantify conjoint localization of discrete signals are of general interest to signal processing researchers,
since optimal conjoint localizations of a filter would provide the best trade off in time and frequency resolution. A survey
of various methods to quantify the conjoint time (or spatial) and frequency localizations of a signal is provide in [12]. Some
more recent methods to quantify conjoint localizations are proposed in [13–18].

4.1. Measure of conjoint localization

A conjoint localization measure using the variance in time and variance in frequency of the equivalence class of an
FIR filter as proposed in [19] provides an intuitive quantification of localization in the respective domains. The properties
in Theorem 3 and Corollary 1 are used to as necessary conditions of an FIR orthogonal scaling function. The necessary
conditions of FIR orthogonal scaling functions are imposed as constraints in a search to determine a robust lower bound on
the conjoint time and frequency localization.

The measure of time, frequency, and conjoint localizations of an FIR orthogonal scaling function that belong to a perfect
reconstruction QMF as proposed in [19] is defined in the following. Let fa : [0, N − 1] → C be an FIR orthogonal scaling
function such that

N−1∑
n=0

∣∣ fa[n]∣∣2 = 1 = 1

N

N−1∑
k=0

∣∣Fa[k]∣∣2
,

where

Fa[k] =
N−1∑
n=0

fa[n]e− j 2π
N nk, 0 � k � N − 1,

is the N-point DFT of h[n]. The variance of fa in time is defined by the second central moment

σ 2
n,fa

=
N−1∑
n=0

(n − μ)2
∣∣ fa[n]∣∣2

, (12)

where μ is the expected value of n, also known as the mean or first moment, defined by

μ =
N−1∑
n=0

n
∣∣ fa[n]∣∣2

.

The variance in frequency of fa[n] will be computed from Fa[k] according to

σ 2
ω,fa

= 1

N

N−1∑
k=0

(k − ν)2
∣∣Fa[k]∣∣2

, (13)

where the mean in discrete frequency is

ν = 1

N

N−1∑
k=0

k
∣∣Fa[k]∣∣2

.

An unappealing feature of the variances in time and frequency in Eqs. (12) and (13) is that both variances are neither
translation nor modulation invariant. Undesirably, a simple circular shift of the sequence in time and frequency (modulation
in time) changes the respective variances.

The variances in time and frequency are made translations and modulations invariant by considering a sequence as an
element of an equivalence class. Let [h] = {g | g ∼ h}, that is, [h] is the set of sequences g that are equivalence related to
sequence h.

Definition 1. Let f, g be two length N sequences. Define a relation between these two sequences as f ∼ g if ∃ p,q, r ∈ Z

such that

g[n] = e j 2π
N (qn+r) f

[
(n − p)N

]
.

Please cite this article in press as: P.C. Tay et al., Properties of the magnitude terms of orthogonal scaling functions, Digital Signal Process. (2010),
doi:10.1016/j.dsp.2009.12.013



ARTICLE IN PRESS YDSPR:1029

JID:YDSPR AID:1029 /FLA [m3G; v 1.33; Prn:15/01/2010; 14:33] P.6 (1-11)

6 P.C. Tay et al. / Digital Signal Processing ••• (••••) •••–•••
Table 1
Frequency variance of haarN , symlet and dbN , and the ideal magnitude response given in Eq. (17) for lengths 2–20.

Filter length N haarN frequency variance Symlet and dbN frequency variance Ideal frequency variance

2 0.0000 0.0000 0.0000
4 0.5000 0.5000 0.5000
6 1.6667 0.8737 0.6667
8 2.0858 1.5444 1.5000

10 3.2639 2.3327 2.0000

12 4.7026 3.3042 3.1667
14 6.4022 4.4371 4.0000
16 8.3629 5.7382 5.5000
18 10.5849 7.2055 6.6667
20 13.0683 8.8395 8.5000

It is an easy exercise to show that the relation defined in Definition 1 is an equivalence relation (i.e. reflexive, symmetric,
and transitive). Thus, the relation defined in Definition 1 defines an equivalence relation.

The time and frequency localization of an orthogonal FIR scaling function fa is defined as the minimum variance over its
equivalence class, [fa]. That is the localization in time of fa is defined as

σ 2
n,[fa] = min

f∈[fa]
σ 2

n,f (14)

and the localization in frequency is

σ 2
ω,[fa] = min

f∈[fa]
σ 2

ω,f. (15)

The modulation and translation invariant measure of conjoint localization is defined as

γ 2
N,[fa] = σ 2

n,[fa]σ
2
ω,[fa]. (16)

4.2. A linear phase response

To specify a particular length N orthogonal FIR scaling function fa[n], it is suffices to specify its DFT Fa[k] sequence. To
specify Fa[k], it is necessary and sufficient to specify the phase sequence ϕ[k] and the magnitude sequence |Fa[k]| such that
Fa[k] = |Fa[k]|e jϕ[k] for k = 1,2, . . . , N

2 − 1. The FIR time sequence is then the inverse DFT of Fa[k].
A search that will vary the magnitude terms will be used to determine a lower bound on the conjoint localization. The

discrete phase sequence used to determine a lower bound on conjoint localization will be fixed for each length N sequence.
It will be proven that a linear phase response guarantees a symmetric time sequence in the equivalence class. It will be
shown that symmetry in time produces a lower time variance than nonsymmetric filters. Thus, motivate the use of a linear
phase response to determine a lower bound on conjoint localization.

Table 1 shows the frequency variance produced by the equivalence class of the length N Haar, Daubechies least asymmet-
ric (symlet), and Daubechies extremal phase scaling functions (dbN ). The Haar has two nonzero terms, which are adjacent
to each other. The nonzero terms have value 1√

2
. The Haar scaling function is zero padded as necessary to produce a length

N sequence. The symlet and dbN have the exact magnitude response. It is well known [4] that orthogonal scaling functions
whose lengths are greater than two must be asymmetric. The symlet was developed so that it exhibits near symmetry, i.e.,
it is the least asymmetric FIR orthogonal scaling function. The phase of the symlet is nearly linear. When the length is two,
then all three scaling functions coincide. Table 1 shows that the Haar scaling function produces the largest frequency vari-
ances, where the frequency variance is defined in Eq. (15). The rightmost column of Table 1 shows the frequency variance
for the ideal magnitude response, that is, when

∣∣Fa[k]∣∣ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

√
2 for k = 0, . . . , N

4 − 1,

1 for k = N
4 ,

0 for k = N
4 + 1, . . . , 3N

4 − 1,

1 for k = 3N
4 ,√

2 for k = 3N
4 + 1, . . . , N − 1.

(17)

Table 2 shows the time variances of a sequence produced by applying the generalized linear phase of the Haar scaling
function to the magnitude response of dbN , which is also the magnitude response of the symlet. The results of Table 2
suggests that linear phase, i.e., symmetry, decreases the time variance σ 2 defined in Eq. (14).
Please cite this article in press as: P.C. Tay et al., Properties of the magnitude terms of orthogonal scaling functions, Digital Signal Process. (2010),
doi:10.1016/j.dsp.2009.12.013
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Table 2
Time variance of a symmetric (linear phase) filter with the dbN (or equivalently the symlet) magnitude response, the symlet, and dbN for lengths 2–20.

Filter length N Linear phase time variance Symlet time variance dbN time variance

2 0.2500 0.2500 0.2500
4 0.2500 0.3036 0.3036
6 0.3458 0.4412 0.4412
8 0.4154 0.4427 0.5930

10 0.4560 0.5596 0.7664

12 0.5026 0.5314 0.9565
14 0.5409 0.6570 1.1583
16 0.5780 0.6318 1.3800
18 0.6126 0.7195 1.6177
20 0.6453 0.7250 1.8708

Table 3
Conjoint localization of the haarN , symlet, and dbN for lengths 2–20.

Filter length N haarN conjoint localization Symlet conjoint localization dbN conjoint localization

2 0.0000 0.0000 0.0000
4 0.1250 0.1518 0.1518
6 0.2917 0.3958 0.3958
8 0.5214 0.6529 0.9117

10 0.8160 1.3053 1.7877

12 1.1756 1.7559 3.1606
14 1.6005 2.9152 5.1395
16 2.0907 3.6252 7.9187
18 2.6462 5.1842 11.6561
20 3.2671 6.4086 16.5378

It should be noted that the length-N symlet and dbN have identical magnitude response, thus their frequency variances
are equal. The length-N symlet has a phase sequence that is nearly linear. The symlet time sequence exhibits better symme-
try than the time sequence of dbN for N > 6 and the symlet yields a smaller time variance. Thus, the symlet yields a better
(smaller) conjoint localization than dbN . Although the Haar scaling function haarN has the largest frequency localization, it
is shown in Table 3 to have smaller conjoint localization measure than the symlet or dbN for N > 2, due to a small time
variance. It evident that linear phase provides symmetry, which leads to smaller time localization.

It is desirable in many signal and image processing algorithm for the phase sequence to be linear (in the generalized
sense). Except for the Haar case, linear phase and orthogonality are not compatible for N > 2. For the purpose of determining
a lower bound on the conjoint localization γ 2

N,[fa] , linear phase is preferred over orthogonality.
If we assume further that the phase ϕ[k] takes the special form

ϕ[k] =
{− 2π

N λk for k = 0,1,2, . . . , N
2 ,

2π
N λ(N − k) for k = N

2 + 1, N
2 + 2, . . . , N − 1,

(18)

then the discrete phase sequence given coincides with the phase sequence1 of the Haar scaling function when λ = 1
2 .

The following theorem and proof shows that the phase response given in Eq. (18) when λ = 1
2 guarantees a symmetric

sequence in its equivalence class.

Theorem 4. Let N be even and let f [n] be a real-valued length-N sequence with DFT F [k] = |F [k]|e jϕ[k] , where ϕ[k] is given by (18)
with λ = 1

2 . Then there exists a real-valued g ∈ [f] such that g[n] = g[N − 1 − n] for n = 0,1,2, . . . , N − 1.

Proof. Since λ = 1
2 , we have that

f [n] = 1

N

{ N
2∑

k=0

∣∣F [k]∣∣e− j π
N ke j 2π

N nk +
N−1∑

k= N
2 +1

∣∣F [k]∣∣e j π
N (N−k)e j 2π

N nk

}
. (19)

In the second summation of (19), let l = k − N
2 , so that l = 1,2, . . . , N

2 − 1. We then have

1 Up to a time shift.
Please cite this article in press as: P.C. Tay et al., Properties of the magnitude terms of orthogonal scaling functions, Digital Signal Process. (2010),
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f [n] = 1

N

{ N
2∑

k=0

∣∣F [k]∣∣e j π
N (2n−1)k +

N
2 −1∑
l=1

∣∣∣∣F

[
N − N

2
− l

]∣∣∣∣e j π
N (N− N

2 −l)e j 2π
N ( N

2 +l)n

}

= 1

N

{ N
2∑

k=0

∣∣F [k]∣∣e j π
N (2n−1)k +

N
2 −1∑
l=1

∣∣∣∣F

[
N

2
− l

]∣∣∣∣e j π
N ( N

2 −l)e j 2π
N nle jπn

}

= 1

N

{ N
2∑

k=0

∣∣F [k]∣∣e j π
N (2n−1)k +

N
2 −1∑
l=1

∣∣∣∣F

[
N

2
− l

]∣∣∣∣e j π
N ( N

2 −l+2nl)e jπn

}

= 1

N

{ N
2∑

k=0

∣∣F [k]∣∣e j π
N (2n−1)k +

N
2 −1∑
l=1

∣∣∣∣F

[
N

2
− l

]∣∣∣∣e j π
N ( N

2 +(2n−1)l)e jπn

}
(20)

= 1

N

{ N
2∑

k=0

∣∣F [k]∣∣e j π
N (2n−1)ke− j 2π

N Nk +
N
2 −1∑
l=1

∣∣∣∣F

[
N

2
− l

]∣∣∣∣e j π
N ( N

2 +(2n−1)l)e− j 2π
N Nle jπn

}

= 1

N

{ N
2∑

k=0

∣∣F [k]∣∣e j π
N (2n−1−2N)k +

N
2 −1∑
l=1

∣∣∣∣F

[
N

2
− l

]∣∣∣∣e j π
N ( N

2 +(2n−1)l−2Nl)e jπn

}

= 1

N

{ N
2∑

k=0

∣∣F [k]∣∣e j π
N (−2N+2n−1−1+1)k +

N
2 −1∑
l=1

∣∣∣∣F

[
N

2
− l

]∣∣∣∣e j π
N ( N

2 +(−2N+2n−1−1+1)l)e jπn

}

= 1

N

{ N
2∑

k=0

∣∣F [k]∣∣e j π
N (−2(N−n+1)+1)k +

N
2 −1∑
l=1

∣∣∣∣F

[
N

2
− l

]∣∣∣∣e j π
N ( N

2 +(−2(N−n+1)+1)l)e jπn

}

= 1

N

{ N
2∑

k=0

∣∣F [k]∣∣e− j π
N (2(N−n+1)−1)k +

N
2 −1∑
l=1

∣∣∣∣F

[
N

2
− l

]∣∣∣∣e j π
N ( N

2 −(2(N−n+1)−1)l)e jπn

}

= 1

N

{ N
2∑

k=0

“ ” +
N
2 −1∑
l=1

∣∣∣∣F

[
N

2
− l

]∣∣∣∣e− j π
N N e j π

N ( N
2 −(2(N−n+1)−1)l)e jπne− jπ(N+1)

}

= 1

N

{ N
2∑

k=0

“ ” +
N
2 −1∑
l=1

∣∣∣∣F

[
N

2
− l

]∣∣∣∣e j π
N (− N

2 −(2(N−n+1)−1)l)e jπ(n−N−1)

}

= 1

N

{ N
2∑

k=0

∣∣F [k]∣∣e− j π
N (2(N−n+1)−1)k +

N
2 −1∑
l=1

∣∣∣∣F

[
N

2
− l

]∣∣∣∣e− j π
N ( N

2 +(2(N−n+1)−1)l)e− jπ(N−n+1)

}
(21)

= f ∗[(N + 1 − n)N
]
. (22)

Eq. (22) is derived by noticing that Eq. (21) is equivalent to Eq. (20), where the argument is N + 1 − n instead of n. Since
f [n] is real-valued, Eq. (22) becomes f [n] = f [(N + 1 − n)N ]. Computing the first N

2 + 1 terms of f [n] yields:

f [0] = f
[
(N + 1 − 0)N

] = f [1],
f [1] = f

[
(N + 1 − 1)N

] = f [0],
f [2] = f [N + 1 − 2] = f [N − 1],
f [3] = f [N + 1 − 3] = f [N − 2],
...

f

[
N

2

]
= f

[
N + 1 − N

2

]
= f

[
N

2
+ 1

]
.

A desired symmetric sequence g[n] such that g[n] = g[N − 1 −n] ∀ n ∈ [0, N − 1] can now be obtained by applying either of
two circular shifts to f [n]. The first shift is given by g[n] = f [(n − N

2 +1)N ], while the second is given by g[n] = f [(1+n)N ].
To see that g[n] is symmetric in the first case, let g[n] = f [(n − N + 1)N ]. Then
Please cite this article in press as: P.C. Tay et al., Properties of the magnitude terms of orthogonal scaling functions, Digital Signal Process. (2010),
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g[N − 1 − n] = f

[(
N − 1 − n − N

2
+ 1

)
N

]
= f

[(
N

2
− n

)
N

]
= f

[(
N + 1 − N

2
+ n

)
N

]
= f

[(
n − N

2
+ 1

)
N

]
= g[n].

To see that g[n] is also symmetric in the second case, let g[n] = f [(1 + n)N ]. We have then that

g[N − 1 − n] = f
[
(1 + N − 1 − n)N

]
= f

[
(N − n)N

]
= f

[
(N + 1 − N + n)N

]
= f

[
(n + 1)N

] = g[n].
Therefore, both shifts construct a g ∈ [f] that has the desired symmetry property. �
4.3. Lower bounds on conjoint localization

A nonattainable lower bound for conjoint localization of orthogonal scaling γ 2
N,[fa] can be given as

γ 2
N,[f2

a ] � σ 2
n,[haarN ]σ

2
ω,[dbN ]

�

⎧⎨⎩
1
N

∑ N−2
4

k=1 k2 for N not divisible by 4,

1
N

∑ N
4 −1

k=1 k2 + N
32 for N divisible by 4,

�

⎧⎨⎩
(N2−4)

192 for N not divisible by 4,

(N2+8)
192 for N divisible by 4.

(23)

The lower bound in Eq. (23) is unattainable for N � 6 since it is the product of the minimum time variance given by the
zero padded Haar scaling function haarN and the frequency variances given by the symlet or dbN .

An exhaustive search consisting of even length real valued unity �2-norm f [n] was performed to minimize the conjoint
localization measure defined in Eq. (16). The searched varied the free magnitude terms between the magnitude terms of the
Haar scaling function (denoted as |HAARN [k]|) and the Daubechies scaling function (|DBN [k]|). The exhaustive search was
performed with the following conditions.

1) F [0] = √
2.

2) |F [ N
2 − k]| = √

2 − |F [k]|2 for k ∈ [1, N
2 − 1].

3) |F [ N
4 ]| = 1, if N is divisible by 4.

4) |HAARN [k]| � |F [k]| � |DBN [k]| for k ∈ [1, � N
4 � − 1].

5) The phase response of f [n] is given as

ϕ[k] =
{−π

N k for k = 0,1,2, . . . , N
2 ,

π
N (N − k) for k = N

2 + 1, N
2 + 2, . . . , N − 1

to produce a filter in the equivalence class that exhibits symmetry.

Table 4 shows the lower bounds from Eq. (23) and the lower bounds determined from an exhaustive search to minimize
the conjoint localization defined in Eq. (16). The lower bounds given in Eq. (23) for filters length two through twenty
are computed in the second leftmost column of Table 4. The lower bounds on conjoint localization found by an exhaustive
search is given in the second rightmost column of Table 4. The conjoint localization of the zero padded Haar scaling function
is provided in the rightmost column of Table 4. It is evident from Table 4 that a tighter lower bound on the conjoint
localization is attained from the exhaustive search.
Please cite this article in press as: P.C. Tay et al., Properties of the magnitude terms of orthogonal scaling functions, Digital Signal Process. (2010),
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Table 4
Lower bounds for conjoint localization for filter lengths 2–20 given by Eq. (23) in the second leftmost column, an exhaustive search algorithm in the second
rightmost column, and the conjoint localization of the zero padded Haar scaling function in the rightmost column.

Filter length Eq. (23) lower bound Exhaustive search γ 2
N,[haarN ] localization

2 0.0000 0.0000 0.0000
4 0.1250 0.1250 0.1250
6 0.1667 0.2760 0.2917
8 0.3750 0.4937 0.5214

10 0.5000 0.7717 0.8160

12 0.7917 1.1116 1.1756
14 1.0000 1.5178 1.6005
16 1.3750 1.9857 2.0907
18 1.6667 2.5041 2.6462
20 2.1250 3.0915 3.2671

5. Conclusion

In this paper, we review that in the continuous case: the CFT of the cross-correlation of two functions is equal to the
product of the CFT of the first function and the complex conjugate of the CFT of the second function. In the infinite discrete
case: the DTFT of the cross-correlation of two sequences is equal to the product of the DTFT of the first sequence and the
complex conjugate of the DTFT of the second sequence. Similar relation hold with finite discrete sequence and their DFT
when the cross-correlation is defined circularly, i.e., the indices are modulo the length N .

Van Den Bos in [3] showed that without assuming the finite sequence as periodically extended theorems in inversion,
shift, and convolution. His proofs required using modulo arithmetic on the indices, which for all practical purpose is defining
the sequences as periodically extended. The cross-correlation function was modified so that it is finite length. It was shown
through mathematical proof that the relation of the modified cross-correlation sequence defined in Eq. (6) and the real
part of the product of the DFT of the first sequence and the complex conjugate of the DFT the second sequence were DFT
pairs. This relation is analogous to the continuous time cross-correlation, the discrete and infinite cross-correlation, and the
discrete, finite, and circularly defined cross-correlation cases.

The mathematical development of Theorem 2 were applied to real-valued finite-length scaling function of orthogonal
QMFs (discrete wavelet transform filters). Two interesting properties of the magnitude terms were shown to exist. In Theo-
rem 3, it was shown that when fa is a real-valued finite length scaling function of an orthogonal QMF, then

∣∣Fa[k]∣∣2 +
∣∣∣∣F

[
N

2
− k

]∣∣∣∣2

= 2.

Corollary 1 showed that if the length N is divisible by four and the orthogonal scaling function fa[n] is real, then the N
4

magnitude term must equal one, i.e., |F [ N
4 ]| = 1. Theorem 3 established necessary conditions2 on the � N

4 �−1 free magnitude
terms of an orthogonal discrete FIR wavelet scaling function. These conditions on the magnitude terms along with a linear
phase condition were imposed on an exhaustive search to determine a robust lower bound on the conjoint localization of
the equivalence class of an orthogonal FIR scaling function.
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