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ABSTRACT 

 
The knowledge of the structure and morphology of neurons is a 

central part of our understanding of the brain. There have been 

concerted efforts in recent years to develop libraries of neuronal 

structures that can be used for multiple purposes including modeling 

the brain connectivity and understanding how cellular structure 

regulates function. However, at present, tracing neuronal structures 

from microscopy images of neurons is very time consuming and 

somewhat subjective and therefore not practical for the current 

datasets. Current automatic state of the art algorithms for neuron 

tracing fail to work in neuron images which have low contrast, 

amorphous filament boundaries, branches, and clutter. In this paper, 

we develop Tree2Tree, a robust automatic neuron segmentation and 

morphology generation algorithm. It uses a local medial tree 

generation strategy for visible parts of the neuron and then uses a 

global tree linking approach to build a maximum likelihood global 

tree by combining the local trees. Tests on cluttered confocal 

microscopy images of Drosophila neurons give results that 

correspond to ground truth within ±5.3 pixel RMSE margin of 

error. 

 
Index Terms— Segmentation, neuron tracing, morphology, 

filament tracking 

 

1. INTRODUCTION 

 

Automated neuron segmentation remains one of the critical 

open problems in biological image analysis. The neuron 

hypothesis of Cajal states that the functional unit of the brain 

is the neuron and that “all computation is anatomical.”  It 

follows then that our knowledge of the structure or 

morphology of neurons is a central part of our understanding 

of the brain [1]. A concerted plan is currently underway to 

develop libraries of neuronal structures that can be used for 

multiple purposes including modeling [2].  This approach is 

to identify all the shapes, the neurome, and the connectivity, 

the connectome [3], of at least a part of a brain and use this 

knowledge to understand how cellular structure regulates 

function.   

The only combined neurome/connectome described to 

date is for C.elegans [4] and is arguably that critical tool 

which established this organism as one of the central pillars 

of modern developmental and behavioral neurobiology.  

However, neurons in C.elegans tend to be structurally simple 

and likely do not represent the repertoire of morphological 

variation seen in animals from Drosophila to humans.  

Therefore, there is a strong argument to develop a similar set 

of neuronal atlases for other organisms.  Given the 

concentration of genetic, behavioral and physiological data 

collected for Drosophila, it makes most sense to start with 

this animal.  

The Drosophila central nervous system (CNS) consists 

of a brain, associated with higher sensory processing, and 

contains about 40,000 neurons, and a ventral nerve cord 

(VNC) containing about 5000 cells [5].  The VNC contains a 

set of fused subesophageal segments, three large thoracic 

segments and 7 central reiterated and relatively simple 

abdominal segments.  Each segment of the VNC contains 

about 130 neurons and many of these have been imaged at 

high resolution in different animals.  The entire data set 

consists of about 1000 cells yielding about 1GB of 

information.  In order to acquire more useful quantitative 

information, each of the cells needs to be traced and 

coordinates entered into a public database [2].  Such 

information can be used to model electrical conduction in 

large realistic networks as well as be used to develop 

methods to rapidly scan for structural features.  However, at 

present, tracing neuronal structures is very time consuming 

and somewhat subjective and therefore not practical for the 

current datasets.  With the development of newer imaging 

tools [1, 2] much larger datasets will soon become available.  

Therefore, the need to develop new tracing strategies will 

soon become critical. 

Current state of the art automatic algorithms [6, 7, 8] 

for tracing and segmenting neuronal structures are unreliable 

with neuron images which have low contrast, amorphous 

filament boundaries, branches, and significant clutter. Al-

Kofahi et al. [6] use the median value of a directional filter to 

estimate the best possible direction of the neuron filament. 

This algorithm depends on high contrast as well as 

continuous and parallel boundaries of neuronal structures for 

success. In addition to it being semi-automatic with user 

defined seed points, this algorithm does not handle branching 

reliably.  

Wolf et al. [7] manually initialize a quadrilateral 

directional filter over a seed point and use local relative grey 

value differences and local maxima of intensity to trace the 

axons. The starting and stopping criteria are heuristic in 

nature and the algorithm is dependent on considerable 

manual adjustments to give acceptable results. In addition, 

poor contrast can easily throw the algorithm off track. Cai et 



al. [8] approach the neural tracing problem by segmenting 

neuronal cross sections in 2D image stacks with active 

contours [9] and stitching corresponding segmented contours 

across the slices. The strategy for correspondence between 

multiple contours across stacks is not well defined, and this 

method requires optimal alignment of neuronal branches 

along the z axis for the segmentation to be meaningful.  

In our research, we have used confocal microscopy 

images of individual sets of GFP-labeled Drosophila neurons 

[10]. Each image is acquired in focal planes from dorsal to 

ventral. As can be seen from figure 1(b), the neuron images 

are characterized by low contrast, filament discontinuity, and 

poorly defined boundaries. Therefore, usual seed growing 

and edge finding algorithms described above fail to give 

reliable segmentation. We have developed Tree2Tree, an 

automatic neuron segmentation and morphology generation 

algorithm that does not require manual seed points, is not 

dependent on edge consistency and filament continuity, and 

handles neuron branching naturally. Tree2Tree gets its name 

from the fact that it attempts to fit a graph-theoretic tree to 

the neuronal tree. 

The rest of the paper is arranged as follows. Section 2 

introduces Tree2Tree in detail. Section 3 shows results of 

applying Tree2Tree to our dataset. Section 4 discusses future 

extension of this algorithm to the neuronal atlas project. 

 

2. TREE2TREE 

 

Instead of following brightness maxima along filaments, 

Tree2Tree builds a maximum likelihood tree that optimally 

explains the orientation and connectivity of visible brightness 

patterns in the neuron images. Brightness patterns due to 

clutter in specimen preparation are removed by passing 

through a novel graph based pruning method. 

Starting from a 2D intensity image of a neuron, our 

algorithm outputs the centerline of the neuron as a tree (for a 

quick reference to graph theoretic concepts, see [11]), with 

adjacent nodes placed at user defined resolution. The 

sequential steps, the rationale behind them and the 

mathematical formulation are presented next. 

Pixel Classification (Step 1): The raw neuron 

segmentation can be treated as a binary classification 

problem into the foreground neuron pixels (brighter) and the 

background pixels (darker). A global 2-class classification 

over the entire image does not give satisfactory results 

because the relative brightness of the neuron compared to the 

background varies widely over the image. Therefore, we 

employ a local binary classifier at each pixel, the end result 

being a disjoint sets of connected binary „islands‟ which 

suggest possible neuron segments. 

Let our intensity image be denoted by ℐ: Λ → ℒ where 

Λ =   𝑥, 𝑦  𝑥 ∈ (1, . . , 𝑁), 𝑦 ∈ (1, . . , 𝑀) , and ℒ =
{1,2, . . , 𝐿}. If 𝑝: ℒ → [0,1] be the normalized histogram of ℐ, 

and 𝜏 ∈ ℒ and 0 ≤ 𝑁𝜏 ≤ 1 be such that  

𝜏 = max
𝜏

( 𝑝(𝑖)

𝜏

𝑖=1

≤ 1 − 𝑁𝜏),     (1) 

then, we define a class boundary for the binary pixel 

classification problem at every pixel position as   

𝜌 𝑥, 𝑦 = max   𝒪 𝑥, 𝑦 , 𝜏      2 . 

𝒪: Λ → ℒ is a local binary classifier performing pixel 

classification in a 𝑤 × 𝑤 window centered around each pixel 

 𝑥, 𝑦 . 𝑁𝜏  denotes the proportional area the neuron occupies 

in the image frame. 

Classifying pixels with the help of local classifier 

𝜌 𝑥, 𝑦  has the advantage of treating the relative brightness 

of neuron pixels by taking the average background intensity 

of the neighborhood into consideration, while not allowing 

the class boundary to fall below a minimum level 𝜏 

(preventing trivial classification over non-neuron areas with 

uniformly dark pixels). Figure 2 shows the result of local 

pixel classification of the neuron image into isolated islands 

or connected components. 

  Local Medial Trees (Step 2): Let 𝒞 ≡ {𝐶1 , 𝐶2, . . , 𝐶𝑛} 

be 𝑛 connected components obtained from step 1. The goal 

of this step is to characterize the connected components 

according to their filamentous properties, orientation and 

area. 

We extract the skeleton of each connected component 

by applying the binary skeletonization algorithm [12] on a 

boundary- smoothed version of each connected component. 

For each connected component, the raw skeleton is then 

resampled with a user defined resolution 𝑟 to generate 

individual medial trees. Each connected component can then 

be described by the following pair  

𝐶𝑗 ≡  ℳ𝑗 , 𝒜𝑗      (3) 

where  

ℳ𝑗 ≡  𝑉𝑗 , 𝐸𝑗  , 𝑉𝑗 ≡  𝑝𝑗
1   , . . , 𝑝𝑗

𝑚 𝑗     
 , 

𝐸𝑗 ≡   𝑝𝑗
𝑘   , 𝑝𝑗

𝑙  | with some 𝑘, 𝑙 ∈  1,2, … , 𝑚𝑗  , 𝑘 ≠ 𝑙 ,  

and 𝒜𝑗 = 𝑎𝑟𝑒𝑎 𝐶𝑗   (4) 

 
                                 (a)                                  (b) 
Figure 2: (a) Pixel classifier evaluated at every pixel by considering 
intensity information within a 𝑤 × 𝑤 window centered on that pixel (b) 
Result of binary classification is a disjoint set of isolated connected 

component. 

 
                          (a)                                                  (b) 
Figure 1: (a) GFP stained Drosophila CNS neuron. (b) Close-up of a 
neuronal branch structure from the same image with the corresponding 

scale. 



In equation (4), ℳ𝑗  is the medial tree of 𝐶𝑗 , with the set 

𝑉𝑗  of 𝑚𝑗  vertex nodes (with adjacent nodes placed at 

resolution 𝑟) and the set 𝐸𝑗  of (𝑚𝑗 − 1) edges  (since ℳ𝑗  is 

a tree). Thus at the end of step 2 we have 𝑛 connected 

components each of which is represented by its medial tree 

and area. 

Global k-NN Graph (Step 4): We utilize a graph 

theoretic approach in estimating the connectivity between 

the connected components in order to approximate a 

complete neuron. In order to evaluate the weighted distance 

between two connected components, we need to characterize 

the alignment and proximity between components.  

For a connected component 𝐶𝑗  with medial tree ℳ𝑗  that 

has 𝑓𝑗  number of leaf nodes (a leaf node is a terminating 

node in a tree and is connected to only one other node), we 

can define 𝑓𝑗  tangent vectors { 𝑡1
𝑗 , . . , 𝑡𝑓𝑗

𝑗   } with 𝑡𝑙
𝑗 = 𝑝𝑗

𝑙 −

𝒶(𝑝𝑗
𝑙 ) (𝒶(𝑝𝑗

𝑙 ) is the ancestor node for node 𝑝𝑗
𝑙  in ℳ𝑗 ). Refer 

figures 3(a) and 3(b) to understand the medial tree and the 

leaf tangents for a connected component. 

If 2 connected components are in fact part of the same 

branch of a neuron, then we can expect at least one leaf pair 

(with each connected component contributing one leaf) to be 

close to each other and optimally aligned. Thus, for 

connected components 𝐶𝑖  and 𝐶𝑗 , we define the distance 𝑑𝑖𝑗  

between them as  

𝑑𝑖𝑗 ≡ min
𝑘∈ 1,..,𝑓𝑖 ,𝑙∈{1,..,𝑓𝑗 }

{|𝑝𝑖
𝑘   − 𝑝𝑗

𝑙 |2 + 𝜋 − 𝑎𝑛𝑔𝑙𝑒 𝑡𝑘
𝑖 , 𝑡𝑙

𝑗  }   5  

where 𝑎𝑛𝑔𝑙𝑒 𝑡𝑘
𝑖 , 𝑡𝑙

𝑗   is the acute angle between tangent 

vectors 𝑡𝑘
𝑖  and 𝑡𝑙

𝑗 . For a leaf pair (𝑘, 𝑙) that gives the 

minimum distance in (5), the distance squared |𝑝𝑖
𝑘   − 𝑝𝑗

𝑙 |2 

between leaf nodes is small and the tangent vectors face each 

other (hence angle between them is close to 𝜋). See figure 

3(c) for understanding the distance calculation in (5).  

We can now build a global k-Nearest Neighbor graph Ⅎ 

with the connected components 𝐶𝑗  themselves considered as 

nodes. Ⅎ is defined as 

Ⅎ ≡  𝒱, ℰ , 𝒱 ≡  𝐶1, . . , 𝐶𝑛 ,  

ℰ ≡   𝐶𝑖 , 𝐶𝑗 , 𝑑𝑖𝑗  | with some 𝑖, 𝑗, ∈  1,2, … , 𝑛 , 𝑖 ≠ 𝑗    6 .  

Edge  𝐶𝑖 , 𝐶𝑗 , 𝑑𝑖𝑗   with edge weight 𝑑𝑖𝑗  only exists if 𝐶𝑗  

is one of the k nearest nodes to 𝐶𝑖  based on the distance 𝑑𝑖𝑗  

calculated from (5) (Note that Ⅎ is directed).  

Global Connectivity Tree (Step 5): We can now form 

an optimal connectivity tree by constructing a minimum 

spanning tree ℳ [11] of the k-NN global graph Ⅎ such that 

the sum of the edge weights 𝑑𝑖𝑗  over the entire tree is a 

minimum.  

𝜶 − 𝜷 Graph Pruning (Step 6): The vertex set 

𝒱 ≡  𝐶1, . . , 𝐶𝑛  in step 5 might have some connected 

components contributed by image clutter. If we define the 

likelihood 𝒲 𝐶𝑖  of each vertex as  

𝒲 𝐶𝑖 =  𝐸𝑗  +  𝒜𝑗      (7) 

then components with longer medial graphs and higher areas 

have higher likelihood. We can expect noisy connected 

components to have low node likelihood, at the same time 

having poorer proximity and alignment with their 

neighboring connected components, thus contributing to a 

high edge weight. Therefore, the global tree from step 5 is 

used as an input to the 𝛼 − 𝛽 graph pruning function ℱ 

which is defined as  

ℱ ℳ = ℳ𝑓 where ℳ𝑓 =   𝒱𝑓 , ℰ𝑓 , ℳ𝑓 is connected,  

 ℳ𝑓 ⊆  ℳ, 𝒱𝑓 = 𝒱 ∖ 𝒱𝑁 , 𝒱𝑁 =  𝐶𝑖1
, . . , 𝐶𝑖𝑘

 ⊆ 𝒱 such that  

𝒱𝑁 = arg min𝒱𝑁⊆𝒱 |𝒱𝑁|  satisfying 
 𝒲(𝐶𝑖𝑘

)𝑘

 𝒲(𝐶𝑗 )𝑗
≥ 𝛼 and 

𝑑(ℳ𝑓 )

𝑑(ℳ)
≤ 𝛽. Here 𝑑(ℳ) denotes the sum of edge weights of 

the tree ℳ.  

In other words, the 𝛼 − 𝛽  graph pruning removes a 

minimal set of connected components from the tree ℳ such 

that the proportional net node likelihood does not fall below 

𝛼 but the proportional net edge weight is reduced below 𝛽. 

The pruning thus achieves a tradeoff between highly likely 

nodes and highly likely connections. Figure 4(a-b) shows 

ℳ𝑓  calculated on the connected component set from image 

2(b). In figure 4(b), if there is an edge between 𝐶𝑖  and 𝐶𝑗  in 

ℳ𝑓 , a green edge connects the closest leaf pair from ℳ𝑖  and 

ℳ𝑗  in figure 4(b) obtained from (5) . The local medial trees 

ℳ𝑖  are shown in blue. 

Global Node Numbering and Spline Fitting (Step 7): 

Finally, the individual medial trees {ℳ𝑗 }
𝑗=1

|𝒱𝑓 |
 from step 6 are 

merged together using the connectivity information from the 

global tree ℳ𝑓  to form the final neuronal tree 𝒩 =

 ℳ𝑗
|𝒱𝑓 |

𝑗=1
. A global node number is assigned to the nodes of 

the merged graph and cubic splines are fit to individual 

branches of 𝒩 to generate the neuronal morphology. Figure 

 
              (a)                              (b)                              (c) 
Figure 3: (a) A single connected component (b) The medial tree of (a) 
with nodes shown in red, edges in green and leaf tangents in 

magenta. (c) 2 connected components 𝐶𝑖 and 𝐶𝑗  shown in blue, leaf 

tangents shown in red and medial trees in black. 6 pairs of leaf node 
connectivity (shown in dotted green) are tested for the closest 
distance between the components. The closest leaf pair is indicated. 
 

 
                   (a)                              (b)                              (c) 

Figure 4: (a) 𝛼 − 𝛽 graph pruned global connectivity tree of components 
from figure 2(b), with connected component numbers in black and edge 

weights shown besides edges. 𝛼 = 0.9 and 𝛽 = 0.4.  (b) Pictorial depiction 
of 4(a) with medial trees for corresponding connected components in blue 
edges and red nodes. Connections between the medial trees are shown 
in green. (c) The merged global neuron tree from (b) has been 

represented with splines. 



4(c) shows the final version of the spline fitted tree from 

figure 4(b). 

 

3. RESULTS AND DISCUSSIONS 

 

Results of applying Tree2Tree to Drosophila neuron parts in 

2D images are described in detail in this section. In all our 

experiments, we have fixed 𝑁𝜏 = 0.15, window size 𝑤 = 15, 

neighborhood size k =10, filter parameters 𝛼 = 0.9 and 

𝛽 = 0.4. 

Figure 5 shows the final output of Tree2Tree compared 

with ground truth. It demonstrates the effectiveness of 

Tree2Tree in case of ambiguous boundaries (top row) and 

complicated and discontinuous filaments (bottom row).  

Figure 6 shows the application of the 

𝛼 − 𝛽 graph pruning to a neuron global connectivity tree. 

Top image shows the unfiltered tree ℳ (from step 5), and 

bottom image shows the filtered tree ℳ𝑓 . The highly 

unlikely node with large edge distance and small weight has 

been removed after the filtering (shown in yellow). 

Figure 7(a-b) shows that Tree2Tree can easily estimate 

branches while the method of [6] has no automatic 

mechanism to do so. Furthermore the low contrast and 

irregular thickness of the neuronal filaments preclude 

successful tracking of the branches. Figure 7(c) shows RMSE 

pixel errors of Tree2Tree on a set of neuron images, with an 

average RMSE of 5.3 pixels over the set. 

 

4. CONCLUSION 

 

We have presented an automatic neuron segmentation and 

morphology generation algorithm that can reliably trace 

cluttered, low contrast, and irregularly shaped neurons. In 

future, we will use the morphology generated by this 

algorithm to compare similar neurons in a neuron database. 
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(a)                          (b)                                 (c) 

Figure 7: (a) Tree2Tree gives reliable segmentation of neuron in green, 
but method of [6] fails to successfully trace neuronal branches (traces 
shown in yellow) given 3 separate starting points in red. (b) Close-up of 
a failed trace by [6]. Low contrast and inconsistent neuronal thickness 
confounds the tracking process. (c) RMSE pixel errors of Tree2Tree on a 

set of neurons when compared to ground truth. 

 
  
Figure 5: Top and bottom rows show the result of application of 
Tree2Tree to 2 sample neuron images. Leftmost column shows the 
original images, followed by the ground truth in magenta in the 2nd 
column, the automatic segmentation by Tree2Tree in the 3rd column, 
and the automatic results overlaid on the ground truth in the last 

column. The size parameter 𝑁𝜏 = 0.15 in both cases, window size for 
local classification is 𝑤 = 15, and the graph pruning parameters are 
𝛼 = 0.9 and 𝛽 = 0.4. 

 
  
Figure 6: Top image shows a global graph connection before passing it 

through the 𝛼 − 𝛽 graph pruning. Bottom image results after passing 
through the filter with 𝛼 = 0.9 and 𝛽 = 0.4. The unlikely edge that has 
been removed has been circled.  


