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ABSTRACT

Definitions of locally monotonic images are introduced.
The model definitions are complemented with algorithms
that compute locally monotonic versions of a given image
or video frame input. The property of local monotonicity
provides a useful vehicle for image smoothing and
denoising. Local monotonicity is also useful for scale
space generation, wherein the degree of local
monotonicity is the scale parameter. Currently, the
property of local monotonicity is well defined for the 1-D
case, but is not well defined for images or video. In this
paper, models for multidimensional local monotonicity
that extend the 1-D definition are rendered. Regression-
based and diffusion-based processing methods are
prescribed that yield meaningful locally monotonic
images. The definitions and associated algorithms are
-applicable to image enhancement and a variety of
multiscale tasks such as image segmentation and video
coding.

1. INTRODUCTION

Signal smoothness and scale are fundamental
qualities used in digital signal processing, analysis and
interpretation. Both the smoothness and scale of a 1-D
digital signal can be quantified by the highest degree of
local monotonicity maintained by the signal [6]. A 1-D
LOMO signal is defined as follows:

Definition 1: A 1-D signal is locally monotonic of degree
d (or LOMO-d) if every interval of length d is monotonic
(non-decreasing or non-increasing).

So, local monotonicity is well defined in 1-D and has
been used in digital signal analysis, including, for example,
the root properties of the median filter [9]. LOMO signals
are desirable because ramp and step edges (gradual and
abrupt transitions) are allowed and impulses are not
allowed. For multidimensional data, especially for digital
images, an extension of the 1-D definition is requisite.
Previous work in multidimensional local monotonicity
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utilized the following definition [3]: In two (or more)
dimensions, the signal is LOMO-d if it is LOMO-d in the
1-D sense along connected paths in defined orientations.
The enhancement techniques in [3] and the restoration
techniques in [2] essentially enforced local monotonicity
along the image rows and columns.

Here, we provide alternative, more precise definitions
of multidimensional local monotonicity that lead to well-
defined sets of images.

First, models for multidimensional local
monotonicity that are derived directly from the 1-D
definition are discussed. Then, models that are inherently
multidimensional are introduced. For both the extended
models and the direct M-D models, viable algorithms are
provided that generate the LOMO images according to the
image models, and image examples are provided.

2. MULTIDIMENSIONAL LOCAL
MONOTONICITY

To extend the 1-D definition of local monotonicity to
the multidimensional case, we may enforce local
monotonicity along prescribed 1-D paths. We first define
the orientation set for images, which is used in the
definition of LOMO images.

Definition 2: The orientation set O is the set of allowed
orientations. In the continuous-domain case, this set can
include all possible orientations, which we denote O". For
the common square tessellation (tiling), we define the
following three special orientation sets: O denotes the set
of horizontal and vertical orientations {N-S, E-W}, while
O* denotes the set of diagonal orientations {NW-SE, SW-
NE}. In the discrete case, O is the set of horizontal,
vertical and diagonal orientations {N-S, E-W, NW-SE,
SW-NE}.

2.1 Strong Local Monotonicity

In the M-D LOMO models derived from the 1-D
model, we make a distinction between strong local
monotonicity and weak local monotonicity. Strong LOMO



models require the image to be LOMO along all linear
paths allowed by the orientation set. With weak LOMO
models, this definition is relaxed.

Definition 3: An image is locally monotonic in the strong
sense (LOMO-d) if each 1-D (straight) path allowed by the
orientation set is LOMO-d.

Further distinctions are given by specific orientation
sets. An image is LOMO"-d if each straight path through
the image is LOMO-d. For digital images with square
tessellation, we restrict the paths to the horizontal, vertical
and diagonal orientations (using the orientation set 0.
Thus, a discrete-domain LOMO'-d image is LOMO-d
along four orientations in the 1-D sense. An image is
LOMO"-d if the image is LOMO-d in two defined
orthogonal orientations. In the discrete case, we have
LOMO*-d and LOMO*-d. The LOMO*-d images use the
orientation set O* and are similar to the images defined in
[2} and [3]. Likewise, the LOMO"-d images are LOMO-d
along the two diagonal orientations (using orientation set
oM.

(@)
Figure 1 (a) Original "Old Central" image; (b) with additive
Laplacian-distributed noise (stand. dev. 6= 20).

(b)

(@ (b)
Figure 2 An example of the strong LOMO model using
suboptimal LOMO*-3 regression. (a) Result using Fig. 1(a) as
input; (b) result using Fig. 1(b) as input.
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The Suboptimal Regression Algorithm

Ideally, we would like to produce an optimal LOMO-
d image - the closest LOMO-d image to the input image.
This LOMO regression is given by

I*=arg min
HeLOMO-d
Here, the estimate I* is the image closest to the observed
image I, among all images that lie within the set of LOMO-
d images (denoted by LOMO-d). The term Il I - H llp gives
the distance between image H and the observed image I,
defined by an appropriate distance norm |l - llp.

In 1-D, algorithms have been given that produce
LOMO regressions [6] and [8]. In 2-D, a Viterbi-based
algorithm has been presented for binary images [7], but no
practical 2-D LOMO regression algorithm exists currently
for grayscale imagery. To compute LOMO images that are
close to the original image, we attempt to minimize the
distance between the input observation I and the solution
H while also attempting to minimize the deviation from
strong local monotonicity. The problem can be approached
by minimizing the following energy functional:

EH)=IT-HIl+ A1l LOMOH) Ii.
The minimal energy solution to (2) is

H =arg min {E(H)}.
H

HI-Hlp . 1

2

3

Here A is a regularization parameter that balances the
penalties for deviation from the input image I and for
deviation from the set of LOMO-d images. LOMO(H)
gives a penalty for violating local monotonicity on a local
basis in the image.

To find acceptable (but not optimal) solutions to the
nonconvex energy function of (2), we use the generalized
deterministic annealing algorithm (GDA) [4]. GDA is a
deterministic approximation of stochastic simulated
annealing. In GDA, each pixel intensity is modeled by a
"local" Markov chain. The stationary distributions of these
Markov chains are computed as the annealing temperature
is lowered, freezing the solution in a local minimum.
Another difficulty with the energy minimization approach
is the selection of the regularization parameter. Given the
presence of nonlinear operators in (2), the regularization
parameter is determined via cross validation [2]. An
example result from the suboptimal LOMO regression
procedure is shown in Fig. 2. The output image obtained
from the noisy image, shown in Fig. 2(b), demonstrates the
tendency of the suboptimal regression method to produce
blotching artifacts.

The Strong Diffusion Algorithm

A less expensive method that does not produce
blotching artifacts involves a PDE (partial differential
equation) approach. PDE's can be used to enact anisotropic
diffusion of the image intensities — an adaptive smoothing
that preserves edges [1]. A typical discrete anisotropic



diffusion update is given by:

Q
I(x) < I(x)+ ZVIp (®)ep(x) “)
p=1 :
where p represents the diffusion direction, either "E", "W",
"N" or "S" in the 2-D case, and Q is the number of

diffusion directions allowed by the orientation set. VI p(x)

“is the first partial derivative approximation in the p™
direction, and ¢ P(x) is the diffusion coefficient in the p‘h

direction. As the diffusion coefficient approaches zero
(near high gradient magnitude), the diffusion process is
impeded. In relatively smooth areas, the diffusion
coefficient should be near one in value.

To obtain a set of PDE's that generate LOMO
signals, we attempt to remove signal features that cause
both increases and decreases in signal intensity within a
local neighborhood. A PDE that limits the sign changes of
pixel differences within a local neighborhood may be
designed using the following diffusion coefficient:

1

|VI » (x)|

Substituting this diffusion coefficient into (4), we have the
following LOMO diffusion iterate for images:

0]y | 10+ (1/4){Sgn[vlw(x)]+sg“[‘71 E®]
+

cp(x)= ©)

©

(a)
Figure 3 An example of strong LOMO™-3 using the strong
diffusion PDE. (a) Result using Fig. 1(a) as input; (b) result
using Fig. 1(b) as input.

(b

After 256 iterations of (6), we obtain the diffusion
results shown in Fig. 3. Note that features are preserved
and noise is removed without the introduction of artifacts.
A drawback of this method is over-smoothing — a coarser
scale image is generated by strong LOMO diffusion, in
comparison to the regression approach.

2.2 Weak Local Monotonicity

A relaxed form of local monotonicity for images is
defined as follows:

+sgn [V]N(x)]+ sgn[V Is(x)]} t.
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Definition 4: An image is locally monotonic in the weak
sense (weak lomo-d) if it is 1-D LOMO-d in at least one
orientation in the orientation set at each point. This means
that there exists a direction at each point in which all d-
length 1-D intervals containing that point are LOMO-4.

An image is lomo'-d if the image is weak lomo-d
using the set of all allowed orientations. With digital
images, the property of local monotonicity must hold over
at least one of the four defined orientations of O at each
point. A lomo*-d image is LOMO-d row-wise or column-
wise at each point in the image. The lomo*-d images are
LOMO-d along one of the two diagonal orientations at
each point.

@
Figure 4 An example of the weak lomo*-3 diffusion algorithm.
(a) Result using Fig. 1(a) as input; (b) result using Fig. 1(b) as
input.

(b)

The Weak Diffusion Algorithm

A weak lomo image can be generated by utilizing a
modified version of the diffusion PDE in (6). Here, 1-D
diffusion occurs at each image location in the direction that
is "closest” to becoming locally monotonic. For example,
given the orientation set O, the diffusion PDE is

I(x)+ % [sgn(VW y+sgn(Vg )]
USRS N
+ — [sgn(VN )+sgn(Vg )]

In . B=lmin(vy ||V gp<minv y ||vs)] 24 Tt
is the indicator function, which equals unity if the
parenthetical expression is true and zero otherwise. So, if
the pixel in question is closer in value to the western or
eastern neighbor, diffusion is implemented in the east-west
direction. Otherwise, diffusion occurs in the north-south
direction. Fig. 4 provides an example of the weak lomo
diffusion technique. In this case, denoising and scaling are
accomplished without the over-smoothing problems caused
by the strong LOMO model.

A further relaxed version of weak local monotonicity
may be defined using contiguous subsequences centered at
each point in the image, as in Definition 5.



Definition 5: If there exists a d-length contiguous
subsequence centered at each point in the image, allowed
by the orientation set, that is monotonic, then the image is
lomo-d°.

Instead of requiring all d-length intervals containing a
given point to be LOMO-d in the 1-D sense, only the
interval centered at the particular point must be monotonic
when using Definition 5. In this case, the degree d must be
an odd integer for discrete-domain imagery.

Closest Neighbor Algorithm

For the case of the lomo-3° image model, we can use
a simple algorithm to transform a given image into a lomo-
3° image. At each point in the image, we evaluate the
existence of a length-3 monotonic segment in accordance
with Definition 5. At points where the definition is
violated, we update the pixel intensity to its closest
neighbor, as allowed by the orientation set. For lomo-3°,
each of the eight neighbors is considered. An example of
this simple weak lomo algorithm is given in Fig. 5. Note
that. this weak lomo model is not sufficient for denoising
(see Fig. 5(b)). Furthermore, the closest neighbor approach
will not be successful for degrees of local monotonicity
greater than three.

3. DIRECT MULTIDIMENSIONAL
LOCALLY MONOTONIC MODELS

The previous models given for multidimensional
local monotonicity represent attempts to extend the 1-D
interval-based definition to higher dimensioned domains.
In this section, we introduce two LOMO models for
images that are based on monotonicity within image
neighborhoods. Using the concepts of structuring elements
from morphology and filter windows from nonlinear
filtering, direct multidimensional LOMO definitions can be
implemented.

3.1 Morphological Local Monotonicity

With 1-D signals, a LOMO signal I will maintain the
following property: IeB=10B for some B. Here, I¢B
is the morphological closing of I by structuring element B,
and IoB is the opening of I by B. We can extend this
definition to 2-D images.

Definition 6: An image I is morphologically LOMO of
degree B (LOMOM-B) if IeB=IoB, where B is a
structuring element.

The Morphological Algorithm

An update scheme based on morphological filters can
be used to "force" regions of the image to become
morphologically LOMO. We attempt to generate LOMOM-
B images by iterating on

I ((TeB)oB+(IoB)eB)/2 (8)

where the scale of the resultant signal is determined by the
size of the structuring element B. Although the average of
the opening and closing alone can be used to produce
morphologically LOMO signals, an improved rate of
convergence is obtained by utilizing the open-close and
close-open filters, as in (8).

(a)
Figure 5 An example of the weak lomo™-3° closest neighbor
algorithm. (a) Result using Fig. 1(a) as input; (b) result using
Fig. 1(b) as input.

(b)

Typically, fewer than ten iterations are required to
reach a root image that is a fixed point. The iterate in (8)
converges to a root image that is morphologically LOMO
except at "saddlepoints.” The saddlepoints exist where the
signal is simultaneously a ridge (a local maximum in one
direction) and a valley (a local minimum in one direction).
For more information of the morphological algorithm see
[S]. The images shown in Fig. 6 are obtained by iterating

" (8) ten times on the corresponding images in Fig. 1. One
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negative aspect of the morphological approach is the
influence of the structuring element on the result images.
Using a circular structuring element, sharp features and
corners are lost as in Fig. 6. The advantage of the
morphological approach is the ability to preserve certain
shapes in a scaled LOMO image. Moreover, the
morphological approach extends easily to video, 3-D and
M-D data.

3.2 Window-based Local Monotonicity

Alternatively, we can define windows that are
LOMO. Then, a 2-D LOMO image is defined as an image
that consists of LOMO windows.

Definition 7: A monotonic window is a subimage that has
at least one orientation in the orientation set in which each
path is nonincreasing or each path is nondecreasing.

Definition 8: An image I is LOMO of degree B (LOMO-
B) if each subimage determined by the structuring element
B and fully contained in the image, is monotonic.



For example, if we consider a 3x3 window under O*,
there are four possible conditions that would make the
subimage a monotonic window. The three rows could be
nonincreasing; the three rows could be nondecreasing; the
three columns could be nonincreasing, or the three
columns could be nondecreasing. Otherwise, the window is
not monotonic. In the same image, some windows may be
LOMO in one orientation, such as along the rows, where
other windows may be LOMO in another orientation, such
as along the columns.

Algorithms for generating window-based LOMO
images are under development. The strengths of the
window-based definition include edge-preservation and the
ability to extend to higher dimensions.

4. CONCLUSIONS AND FUTURE WORK

The LOMO models and associated algorithms should
be compared using metrics of quality and computational
complexity. One important quality metric is fidelity to the
original image for a given scale. We have listed mean
squared error (MSE) results associated with the algorithms
in the Table for the case of local monotonicity of degree 3.
However, a scale generating process cannot be evaluated
solely by MSE. The type of features retained, edge
preservation, and noise reduction are important qualities
for image segmentation, enhancement, and feature
extraction for image analysis. For example, the weak
closest neighbor algorithm gives the lowest MSE values,
but is incapable of removing noise or removing small-scale
objects.

The computational cost of each algorithm introduced
in this paper has been given in the Table. With the
localized, iterative update schemes, the computational cost
is driven by the number of updates needed for each pixel,
rather than the complexity of the updates. In the Table, K
denotes the number of intensity levels used (e.g., K = 256
for 8-bit grayscale imagery). So, the regression approach is
the most expensive method at O(10K) (order 10K) updates
per pixel. The least expensive method is the simple closest
neighbor algorithm that requires only two passes through
the image in typical cases. One attractive feature of the
algorithms given is that the number of updates does not
increase with additional pixels (larger images).

This paper serves as a commencement in the
exploration of multidimensional local monotonicity. We
have defined several feasible models for locally monotonic
images and have designed techniques that generate images
in accordance with the models. The properties of these
models and the performance of the algorithms need further
analysis. The usefulness of the LOMO models will be
evaluated in their future application to multidimensional
signal processing problems such as image segmentation
and object-based image coding.
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Figure 6 An example of the LOMOM™-B morphological
algorithm. (a) Result using Fig. 1(a) as input; (b) result using
Fig. 1(b) as input. Here, B is a circular structuring element with
diameter = 9.

(b)

TABLE: Comparison of Algorithms

Algorithm MSE from | MSE from | No. of
Fig. 1(a) Fig. 1(b) Updates
Sub. Regression 114.3 365.1 0O(10K)
Strong Diffusion 526.8 858.1 O(K)
Weak Diffusion 481.7 808.8 O(K)
Closest Neighbor 14.2 70.1 2
Morphological 223.3 504.2 0(10)
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