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ABSTRACT

This paper presents a robust technique for automatically
detecting radioactive seeds that are used for prostate cancer
therapy. The main innovation of the detection technique is the
utilization of distributed constant false alarm rate (CFAR)
processors and orientation-sensitive morphological filtering to
locate the seeds in the ultrasound imagery. CFAR detection is
utilized to detect the seed candidates with high signal-to-clutter
ratios (SCR's). The CFAR problem is posed as the detection of a
fluctuating target against K-distributed clutter. Adaptive
template matching is used to detect the weak seed signals and to
discriminate the seed-like clutter from the seed candidates. To
reduce the speckle noise, the adaptive template matching uses
orientation-sensitive morphological filters. The complete
detection algorithm has been tested using a set of phantom
ultrasound images containing radioactive seeds. In the process of
implantation of seeds for radiotherapy, the detection method can
be used to evaluate seed placement before 3-D reconstruction is
accomplished.

1. INTRODUCTION

Cancer of the prostate is reported to be the second most
frequently diagnosed cancer in the United States male
population and is the third most frequent cause of cancer death
[1]. Recently, percutaneous transperinal implant of radioactive
seeds has been utilized with success for the treatment of
prostatic carcinoma [1]. This treatment is fast becoming a
preferred alternative to standard treatments involving the
surgical removal of the prostate gland or repeated external-beam
radiation therapy.

Ultrasound, a commonly used medical imaging modality
with numerous other medical applications such as demonstrating
blood flow through a vessel, estimating the extent of prostatic
cancer, and assessing the health of the fetus, has been used as a
guide for the radiation treatment and planning for cases that
involve prostatic carcinoma. In the ultrasound guided
radioactive seed implantation, the seed detection, recognition
and precision positioning are essential in achieving the best
curative effects within the targeted zones, at the lowest cost of
damaging neighboring healthy tissues or organs. Although
ultrasound imaging has several benefits including the low cost,
the real-time imaging ability and the absence of dangerous
radiation, the ultrasound imagery suffers from degradation that
renders the interpretation by humans cumbersome. In our
application, we desire an automated seed detection process that
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will be used in implantation before the 3-D reconstruction is
computed.

This work studies the usefulness and robustness of the
constant false alarm rate (CFAR) detection and adaptive
template matching in the detection of radioactive seeds in
ultrasound imagery (see Figure 1). After a general description of
the algorithm is presented in section 2.1, the CFAR detectors for
seed detection in the K-distributed clutter are formulated in
section 2.2. Theoretical detection performance is also presented
in this section for the design of actual detectors in our
experiments. Next, the adaptive template matching is addressed
in section 2.3, focusing on template extraction. Finally,
expetimental results and conclusions are provided that
demonstrate the efficacy of the approach.

2. DETECTION ALGORITHM

2.1. General description of the detection algorithm

The overall detection algorithm consists of two parts: (1)
the distributed CFAR detection and (2) adaptive template
matching. With the properly designed CFAR detection scheme,
the set of seed candidates including the strong seed signals,
weak seed signals and seed-like clutter can be detected.
Complementary to CFAR detection, the adaptive template
matching is used to detect weaker seeds that are neglected by
one of individual CFAR processors and to eliminate the seed-
like clutter that produces false detections. To make better use of
the geometry of the ultrasound imagery, a polar coordinate
system is adopted. The origin of the system is located at the
imaging transducer and the line of sight of the transducer is in
the axial direction.

The distributed CFAR detection is completed in two steps.
Firstly, two subsets of seed candidates are detected by applying
axial and lateral CFAR detectors. Secondly, a fusion criterion is
used to merge those seed candidates, yielding the set of strong
seed signals and forming a complete set of seed candidates.

The template matching proceeds as follows. Firstly, the
central positions of the strong seed signals are estimated. Then, a
typical seed template is extracted from the sub-images of the
detected bright seeds. Next, the template and the sub-images of
all seed candidates, except for those detected as strong seed
signals, are preprocessed with orientation-sensitive image
morphology. Finally, a cross-correlation algorithm is applied to
recover the weak seeds and remove seed-like clutter.

The central problem in the CFAR solution is posed as
detecting fluctuating target against K-distributed clutter. A
spatially rotating seed template manifests the adaptivity of the
template matching.



2.2. Distributed CFAR detection

In this section, we first present and justify the choice of the
models for the clutter and for the target seeds. Based on these
models, we then proceed to formulate the detection and false
alarm probabilities for cell average (CA) and order statistic (OS)
detectors followed by a description of individual processors.
Lastly, we present the fusion criterion.

2.2.1.Clutter and Target-plus-clutter statistical models

As with coherent radar imagery, pulse-echo uitrasound
imagery are heavily affected by speckle noise that results from
the random scatter produced by reflecting scatterers that have
dimensions of the same scale as the sound wavelength. In the
imagery of blood cells, the fluctuations of a speckle pattern
exhibit Rayleigh-distributed amplitude with standard deviation
equal to the mean. This kind of speckle pattern is fully
developed and ideal; however, the pattern occurs only when
many fine randomly distributed scattering elements exist within
the resolution cell of the irnaging system. More generally, tissue
scatter may be better modeled as having a multiplicative, signal-
dependent K distribution. This kind of scatter contributes a
coherent or specular backscattered intensity that is itself
spatially variant. Another class occurs when a spatially invariant
coherent structure is present within the random scatterer region
such as organ surfaces and blood vessels. The probability
density function of the echo signals becomes Rician distributed
in this case [2).

Recent histological studies [1] have shown that the prostate
is divided into two major zones: the prostatic glandular zone and
the periurethral zone. The glandular prostate is separated into a
peripheral and a central zone of acinar tissue. The central zone is
composed of irregular, large acini. Parts of prostatic urethra and
the ejaculatory ducts and the verumontanum are collocated. The
acini of the peripheral zone are smaller and rounder with smooth
walls and are more uniforin in size. The muscular stroma is also
a different tissue found in the area. The central zone’s stroma is
compactly arranged. But the musculature of the peripheral zone
is more random and not as tightly interwoven.

Hence, we know that the detection of seed is to be carried
out in a complex clutter environment. Therefore, the prostate
clutter envelope may be better approximated by the K-
distribution. The amplitude probably density function for pure
clutter in a non-coherent integrated data set is assumed to be
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where L is the effective number of looks for the non-coherent
integrated image data, v is the shape parameter, ¢ is a power
parameter such that P, =(L-v) / ¢ is the clutter average power,

and K, (x)the modified Bessel function of the second kind.

In the target-plus-cluiter region, if we assume the amplitude
of the pure target adheres to a gamma distribution of 2L degrees
of freedom, then we can compute the overall amplitude PDF of
the target-plus-clutter random variable X, i.e.,
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2.2.2. CA- and OS- CFAR processors
Given the PDF of the test statistic Z, pZ(Z) , for a

specific CFAR technique, the false alarm probability is given by
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where T is a threshold multiplier factor.
Assuming that a target has a signal-to-clutter ratio (SCR) of
R(R= 20-,2 /(LV / cz)), the detection probability of the target

can be expressed as
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The CFAR technique is accomplished by collecting N

reference samples and implementing the adaptive threshold test:

X>17° ©)
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where [ o is null hypothesis, H | is target existing hypothesis.

In the cell average (CA) CFAR processor, the test statistic
Z is taken as the sum of the amplitudes of N referenced samples:

N .
Z=Y X,
i=l
The test statistic for the order statistic (OS) CFAR processor is

taken as the amplitude of the k™ ranked pixel among the N
referenced pixels in ascending order in accordance with their
intensity magnitudes: Z = X

If we assume that the observations in the reference window
are statistically independent and identically distributed (1ID),
then the PDF's of the test statistic of the local clutter Z are
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By substituting the pS#(z) or p2°(z)into (4) and (5), we
can design our CFAR processors, compute the corresponding T
for a constant P » and SCR for a specific PD .

As an illustration, (2) - (5) are used to evaluate theoretical
detection performance for certain CFAR CA and OS. Figure 1
shows the plots of the probabilities of detection and false alarm
vs. threshold multiplier factor for a (a) CA processor with N=6,
L=16, SCR=10dB and 1=1.5; (b) for OS processor with N=6,
L=16, k=2, SCR=10dB, and v=1.5.

2.2.3.Structures of individual CFAR processors

By observing the B-mode ultrasound imagery of the
phantom prostate as shown in Figure 1, we find that the seed
signals have geometrical symmetry with respect to the line of
sight of the imaging system. Moreover, the effective field of
view lies only in a sector.

To take full advantage of the geometrical features of the
seed and the effective sector of the image, the first CFAR
processor is applied to 2 number of subregions (with one end at
the position of the transducer) scanning across the effective
image sector. One such subregion is illustrated in Figure 3 (a).
Instead of applying the CFA processor to the full resolution
image, we apply the processor to a preprocessed low-resolution
image with such a scale that individual seeds appear as point
targets. Through a combination of filtering and subsampling, we
can create any desired high-scale representation of the base
image.

With this processor, a constant threshold coefficient can be
set for all subregions for a required probability of false alarm

(vaa ) value.
We then apply another CFAR processor to a number of
lateral subregions spanning over the effective image sector, one

of which is shown in Fig.3 (b). Similarly, we apply the CFAR
processor to a preprocessed low-resolution image.

2.2.4. Detection fiision
At the fusion stage, the detection problem is posed as a
hypothesis test in which:

Strong seed hypothesis K, : S, =S, = 8" )
Seed candidate hypothesis K, : S, = S' i=1.2
where S ; 1s the detection decision at the i™ processor. The

symbol = denotes that at least one of the S ; decisions is equal
to S* where the symbol S* represents the H, decision in the
individual CFAR processor.

The fusion rule for K, is AND, which decides in favor of
K, only if both processors detect a seed. Since the individual

CFAR processors detect stronger seed signals with higher
probability, this fusion rule yields the brightest seeds with the
high confidence. The OR rule in the fusion stage detects the
complete set of seed candidates by union of two subsets of seed
candidates.

2.2.5. Distribution parameter estimation
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To design the CFAR processors, the K distribution order
parameter v for clutter needs to be selected. The order parameter
may be estimated by [3]

A+1/L)A+1/v)=(t), (10)
where <t> is the average of the normalized intensity square over
a uniform region, ¢ = 12/<[>2 , I is intensity image. However,

this estimator is appropriate only when the value of v is large.
It has been established that the order parameter can be
estimated for low order values by solving [4]

var[ln(D)] = y'(V) +y'(L), (1)
where y/'(x) is the derivative of the digamma function ¥/(x),

and var[ ] is the variance of the logarithmic of the intensity
image over a uniform clutter region.

As a compromise, (10) is first used to find an initial
estimate of v. If this initial value is high (>95), the estimate is
accepted; otherwise (11) is used to refine the estimate. Estimated
values of the clutter order parameter may vary in a wide range.
Using our experimental data, a range of 1.5 to 16 has been
observed.

2.3. Adaptive template matching

In this section, we address enhancement of the detection
performance through the use of an adaptive template matching
technique. We utilize the seed patterns from the high SCR cases
to form templates that locate the weaker seed signals.

To achieve seed position estimation, we employ a p-tile
threshold that selects the corresponding right tail of the
histogram of the prefiltered sub-image of typical bright seed.
Then, to preserve the shape of the seed signal, we use
orientation-sensitive morphological filters (open filters) in each
sub-image containing candidate seeds. The structuring element
has a rectangular shape, but is adaptively tilted such that it is in
alignment with the line of sight passing the center of the
window. Fig. 4 shows a comparison of the filtered images with
conventional opening and an orientation-sensitive morphological
filter. An improvement in preserving details is observed with the
adaptive filter.

After enhancement, the set of seed candidates and seed-like
clutter signatures as well as the strong seed signals have been
detected and identified. Here, we try to recover weak seed
signals and remove the remaining clutter. To do so, we use the
detected seed images to form a sequence of adaptive template
images, and apply the templates on the sites of all seed candidate
positions to detect additional seeds.

Because the seed is a 3-D target, the last step in the
detection algorithm is the seed center estimation. This step is
structured simply as a seed sub-image centroid computation. The
sub-image is also taken as a tilted rectangle using the same
window as the structuring element applied in the orientation-
sensitive morphological filer.

3. EXPERIMENTS AND RESULTS

The proposed algorithm has been tested to detect seeds
using 5-MHz ultrasound sector B-scan imagery of a prostate
phantom, as shown in Fig.2. Shaped like a flattened cone, an
average-sized normal prostate measures approximately 4 cm in



maximum transverse diameter, 3 cm in anterior-posterior
dimension, and 3.8 cm in cephalocaudad projection.

Fig. 5 shows the detection results with an 'X' marking each
detected seed. Table I shows real performance of the detection
algorithm obtained with ground truth validation. Here MAE
indicates the maximum absolute error (in millimeter) of seed
positioning. In general, we achieve a correct detection rate of
93.7%, a false alarm rate of 8.7% and a miss rate is 6.2%. This
verifies the effectiveness of our algorithm, which allows
precision analysis of the seed implantation process used to
combat prostate cancer.
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Fig.1. CFAR processor performance, (a): CA- processor for
N=6, L=16, SCR=10dB, V =1.5; (b ): OS-CFAR processor

for k=2, N=6, L=16, SCR=10dB, v =1.5.

(@) (b)

Fig.2 Ultrasound
image of prostate

Fig.3(a) An axial detection subregion;
(b)a lateral detection subregion.

(@ ®)
Fig.4. Filtered images using (a) orientation-sensitive
morphology and (b) conventional morphological filters.
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Fig.5. Detection results
in which each seed is marked by an X.

Table I: Experimental performance for seed detection.

#Seeds  Actual #False #Missed MAE
Exp.# Detected # Seeds Detect Detect (mm)

1 3 3 1 1 0.92
2 3 3 0 0 0.92
3 4 4 0 0 12
4 6 5 1 0 1.16
5 5 5 1 1 09
6 6 5 1 0 0.9
7 6 5 1 0 1.12
8 5 5 0 0 14
9 4 5 0 1 1.42°
10 5 5 0 0 1.16
11 5 5 0 0 0.84
12 5 5 0 0 0.9
13 S 5 0 0 0.46
14 5 6 0 1 03
15 11 9 2 0 2.52
16 7 8 | 2 1.12
17 6 6 0 ] 1.68
18 6 6 0 0 0.9
19 5 5 0 0 0.84
20 5 5 0 o] 1.42
21 5 5 1 1 1.68
22 5 5 0 0 1.44
23 5 5 0 0 1.44
24 5 5 0 0 1.68
25 6 5 1 0 1.44
26 5 5 1 1 0.28
27 5 5 1 1 0.84
28 3 3 0 0 0.84
29 7 5 3 1 1.04
30 9 8 2 1 1.98
31 6 7 0 1 1.78
32 6 5 1 0 0.56
33 5 5 0 0 0.84
34 S 5 0 0 0.64
35 5 5 0 0 0.46
36 4 4 0 0 1.52
37 4 5 0 1 1.12
38 5 5 0 0 1.52
39 5 5 0 0 1.44
40 5 5 0 0 0.9




