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Abstract

Segmentation-based image and video coding is
desirable for many multimedia applications due to the
additional functionality provided by object-based
representation. Methods of object-based coding have
generally treated the segmentation and encoding
processes as separate problems. Here, we present an
integrated segmentation and coding method unified by the
theoretical structure of morphological local monotonicity.
This unified segmentation/coding scheme utilizes
morphological operators within a nonlinear scale-space to
generate a segmentation. The segmented regions are
independently coded and reconstructed using a
morphological generalization of Laplace’s equation in a
multiresolution framework. The coding procedure is
appropriate for non-textured imagery and avoids
arbitrarily chosen constants. Examples are given for two-
dimensional grayscale imagery.

1. Introduction

Object-based coding requires both a segmentation
method and a means of compression. The segmentation
step typically employs an edge-detection or measure of
discontinuity, while the compression step typically uses
an assumption of continuity or correlation between
neighboring pixels. Though both tasks rely on some
measure of intra-object homogeneity, they are treated as
separate procedures, each with its own arbitrary constants
and methods for measuring homogeneity.

We wish to unify the processes of segmentation and
object-based coding by relating the parameters used in
each process and employing a coding method that is
naturally object-based. Here, we restrict our initial study
to the case of non-textured imagery. In this special case,
intra-object homogeneity can be equated with the
smoothness of graylevel values. The more general case of
textured imagery may be explored in future research
where homogeneity is evaluated by texture features rather
than simple graylevel values.
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For non-textured imagery, edge detection should
measure a Jack of smoothness of a magnitude exceeding
some perceptually significant threshold. Likewise, coding
should consist of generating a minimal description of a
smooth surface for efficient transmission and
reconstruction at the decoder. Our goal is to employ the
same mathematical operators in both the detection of
smooth surfaces (or lack thereof) and the reconstruction
of smooth surfaces from minimal descriptors.

Toward this goal, we exploit a measure of signal
smoothness local monotonicity. This signal
characteristic can be expressed in terms of self-dual
morphological filters. Here, the operators systematically
replace classic image processing tools, such as Gaussian
filters, gradient and edge detectors, and Laplacian
operators, with their self-dual morphological counterparts
while avoiding the use of arbitrarily chosen parameters.
Advantages of the morphological approach also include
efficient implementation, edge localization, and specific
scale properties by the use of fixed-sized structuring
elements. We begin with a review of local monotonicity
and its relationship to morphology.

2. Morphological Local Monotonicity

In one dimension (1-D), a signal is locally monotonic
of degree or scale n ("lomo-n") if and only if the signal is
monotonic within every interval of length n. This concept
has been generalized to higher dimensions by the use of
self-dual morphology [1], and we refer to this

-generalization as morphological local monotonicity to

distinguish it from other proposed definitions [2]. Such
multidimensional lomo signals possess specific scale
properties. Here we restrict our discussion to the discrete
2-D case and note two of these properties [1]:

Property 1. A lomo-n signal is a root signal of the

morphological lomo filter:
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where the signal f is iteratively filtered using a constant-
valued circular structuring element k until convergence.
The structuring element consists of all pixels with
Euclidean distance from the center pixel is less than or
equal to radius r, where r is related to the scale n by

r(n) = (n-2)/2. ¥3)]
Property 2. Each local extremum belongs to a constant-
valued plateau enclosing the structuring element.

The self-dual property and use of circular structuring
elements make the lomo filter appropriate for scale-space
generation by avoiding graylevel and orientation biases.
Also, as is shown in the following section, the well-
defined plateau property facilitates sampling that occurs
in a pyramidal coding technique.

3. Locally Monotonic Coding

Here, we outline the use of multiscale locally
monotonic image representations for object-based coding.
It is assumed that a segmentation has been previously
generated by an arbitrary method. In section 3.4, however,
we suggest employing a segmentation method that is
coupled to the coding method through the concept of local
monotonicity. Inter-object segmentation boundaries’ are
transmitted separately from intra-object graylevel content,
and'we do not make a contribution to such contour coding
techniques.

3.1 The Lomo Pyramid

Progressive encoding is accomplished by the use of
multi-resolution pyramids. At the encoder, the original
image is used for the generation of a lomo pyramid,
formed by lomo filtering and uniform sub-sampling. This
pyramid is then coded in a multi-resolution coarse to fine
order.

Pyramidal representations computed by filtering and
sub-sampling have been used successfully for image
coding [5]. Here, we show the gencration of the lomo
pyramid, which uses a self-dual lomo filter. In order to
ensure proper sampling on a rectangular image grid, a 2 x
2 structuring element is employed- during the filtering
stage. Thus, the lomo plateau size (Property 2)isa 2 x 2
square. With this condition met at the local signal
extrema, one-of-two horizontal and vertical sampling is
guaranteed to include all extrema, or equivalently all
level-set connected components. This pyramidal structure
is efficient in deriving successive approximations to the
original image.

For a given segment at a given pyramidal resolution,
single-pixel graylevel values within the segment serve as
boundary conditions for solving the morphological
analogy to Laplace’s equation. Here, the classic Laplace’s
equation,
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with s(x,y) defined as the mean between the dilation and
erosion with respect to structuring element k(x,y):
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For 1-D lomo-n signals, this morphological analogy

s(x,y)=

proportional to the common second derivative
approximation
2
7} (x+A)=2f(x)+ f(x-A)
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for lomo-n signals, where A =r(n).

This solution smoothly interpolates between the known
boundary condition points. This definition of smoothness
is again used in the segmentation process of the next
section. The boundary condition data are transmitted to
the decoder side, and the corresponding solution is used
as an initial estimate of the segment. Additional points are
chosen one by one at the locations of the greatest error
between the decoded and original pyramid level.

The overall coding procedure then consists of
determining the set of boundary condition points for each
segment that serve to reconstruct the graylevels at the
decoder. Because the coding is progressive, at each
pyramid level there exists an estimate of the decoded
image. Errors from this estimate are transmitted, rather
than absolute graylevel values. These errors are quantized
in accordance with an adjustable error tolerance threshold
(a parameter which we relate to the edge detection
threshold in our segmentation). Visually displeasing
quantization artifacts such as staircasing are avoided,
because the quantized values are superimposed upon the
smoothly varying solution to Laplace’s equation. Fig. 1
didgrams the encoding process.

3.2 The Morphological Laplace’s Equation

A crucial step in the encoding process is the solution of
the morphological Laplace’s equation for interpolation
between encoded points. The numerical solution is similar
to its classical counterpart. It should be noted that the
geodesic propagation and smoothing of [3], though not
explicitly stated, can be viewed as an algorithm for the
solution of the morphological Laplace’s equation. In [3],
the boundary conditions are the graylevel values from
alongside edges, akin to the classical Dirichlet problem in
partial differential equations. This reliance upon
graylevels from the object boundaries makes the method
very sensitive to edge localization errors. Even step-like
edges which are properly localized but contain transition
regions wider than a single pixel (e.g. due to camera



focus) cause significant errors to be propagated into the
interpolated regions.

In contrast, our method imposes isolated point values
within a segment as boundary conditions rather than
complete reliance upon precise edge localization or sharp
step edges. This method imposes essential boundary
conditions at this finite number of points, rather than
along the entire segment boundary. The interpolation
from these points extends to infinity, so that graylevel
content of an object may be calculated independently of
the shape of its contour. For example, the first value
generates a constant-valued surface, three values
determine a plane, etc. Upon reconstruction, this surface
is truncated to match the contour shape of the
corresponding segment. In this way, each segment is
independently interpolated. An advantage of this approach
for video sequences is that is automatically estimates
occluded portions of objects.

The stopping condition for the encoding of individual
boundary condition points is chosen to be the iteration in
which no error values exceed a “perceptually significant
graylevel difference” T as defined by the user. This
parameter is also used in the segmentation process itself
as an edge detection threshold, thus providing a natural
coupling between the segmentation and coding method. In
fact, the concepts of smoothness by local monotonicity
and the morphological Laplacian that define the coding
process are also the basis for the segmentation process, as
explained in section 3.4.

For the computational solution of the morphological
Laplace’s equation, multiple techniques are possible. The
method of [3] is one such possibility. Another, more
conventional approach is similar to one used in the
numerical solution of the classic Laplace’s equation [6].
In the classic (2-D) solution, the mean of the values in a
concentric circle about a given point replaces the value at
that center point. With the boundary condition points
serving as seeds, the iteration continues until
convergence. (The circles must be small enough not to
enclose boundary condition points within their interior.)
When the solution is reached, all points equal the mean of
their immediate surroundings, which, in the differential
limit, means that the Laplacian is zero.

For the morphological case, we desire a solution in
which the morphological Laplacian is zero. That is, the
mean of the (circular) dilation and erosion equals the
center point, rather than the mean of the entire circle.
Thus, at each iteration the mean of the circular dilation
and erosion replaces the center pixel value.

3.3 Multiresolution Error Encoding
The pyramidal coding ptoéess provides both

compression and functionality. Compression is achieved
by removing detail below a given scale or resolution and
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capitalizing on the underlying smoothness between
neighboring pixels. Such smooth regions are efficiently
represented by a small number of boundary condition
pixels, which serve as seeds for the morphological smooth
interpolation. The multi-resolution successive
approximation within a given resolution allows the
increased functionality of variable bit-rate transmission
and progressive image display at the receiver.

The image estimation procedure begins at the highest
pyramid level (1 pixel x 1 pixel), with an arbitrary
estimated value (e.g. 128 for a 256-graylevel image). The
error is calculated at the transmitter as the difference
between the estimate and the corresponding level of the
lomo pyramid. The most significant single error is then
chosen for use as a boundary condition point. While this
error value determines the point to be selected as a
boundary condition, its error value is not directly
transmitted. Instead, the quantized difference between the
lomo pyramid and a reference image is used.

The reference image is chosen such that the order of
points chosen does not need to be transmitted to the
receiver. We choose the reference image to be the
previous reconstructed pyramid level (upsampled to the
current resolution). This way, the entire batch of boundary
condition values corresponding to a given pyramid level
can be sent to the transmitter together, rather than point-
by-point, which would necessitate transmission of each
point’s spatial location.

Graylevel difference values are first uniformly
quantized using a step size 7, then entropy coded before
transmission. For smooth surfaces, most of these
difference values are zero and the resulting compression
approaches one bit per pixel at full resolution. (Qverall
compression at less than one bit per pixel is possible if the
selection of new boundary condition points is terminated
before the full resolution is reached.) Additional
compression may be possible if longer run-lengths of zero
values can be correlated with small difference values.
This is a matter for further investigation. For our
examples, no run-length coding is used, only a single
Huffman coding of all quantized difference values.

Note that while the quantization in difference values
significantly improves entropy compression, it does not
translate into quantization in the possible values of the
reconstructed image. The smoothly interpolated solutions
to Laplace’s equation may take on the full range of
graylevel intensities, because the isolated quantized
values are superimposed upon smoothly interpolated
surfaces with a continuous range of values. Thus, the
adjustment of these intensities by quantized amounts
before re-interpolation does not result in perceptually
undesirable quantization effects. This is observed in the
examples shown in the next section.

Coding continues at each scale until all errors are
below the specified threshold, or until a user-defined bit



limit is reached. The estimate at a completed level is then
upsampled and Laplace’s equation re-solved for use as the
initial estimate at the next finer level. The upsampling (by
a factor of two in each dimension) simply takes the coarse
resolution values of the previous level and smoothly
interpolates between them (by a 2x2 pixel lomo filter).
Consult the summary of the coding method in Fig. 1.

3.4 Lomo Segmentation

Here we outline the multiscale lomo segmentation
procedure. First, a scale-space of increasing degree of
local monotonicity is generated. Each scale is generated
by applying (1) with a structuring element of a given
radius to the previous scale until convergence. Faster
convergence may be achieved by applying the alternative
lomo filter:
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as discussed in [1). Because this scale-space is generated
solely for accurate boundary detection and ‘segmentation
(it is not transmitted), sampling is not employed here,
though could be considered for computational efficiency.

Within the lomo scale-space, the morphological
Laplacian operator (4) performs edge detection at each
scale. Edges are detected as zero-crossings of this
Laplacian, - with- a user-defined threshold on the
morphological gradient magnitude given by:

'Vl f(X,y)"—' f(x,)’)Qk(x-)’)~f(x-y)9k(x,Y) . (8)
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The threshold value represents the perceptually significant
graylevel difference as is used in the encoding.

This edge detection may be viewed as a morphological
analogy to the linear Laplacian of Gaussian method,
where a morphological locally monotonic scale-space
replaces the linear Gaussian scale-space. As described in
[4], gaps in the detected zero-crossing contours are closed
by scale-dependent dilation (structuring element radius of
rf2) and thinning. Between scales, the thinning process is
biased towards the retention of finer-scale edges. Thus,
wherever edges overlap between scales, the segment
boundaries are refined as scale decreases.

The two parameters, segmentation scale and gradient
threshold, are selected by the user in order to extract
semantically meaningful objects. Their values, therefore,
depend upon the application, but should be image
independent.

4. Results and Conclusions

We present in Fig. 2 sample results for a synthetic
image and for a portion of the well-known “Lena” test
.image, to allow easy comparison to other methods. The
synthetic image contains simple geometric shapes with
sharp edges and smoothly varying surfaces. The selected

region of the natural image also contains non-textured
objects. Both images are 128x128 pixels, with 256
graylevels. For the segmentation of the synthetic image,
an initial scale corresponding to a structuring element of
radius of 3 pixels is used, along with the selection of a
gradient threshold of 8 graylevels. For the natural image,
these parameters are 5 and 10, respectively. We show
decoded results for the lomo method as well as
progressive JPEG encoding at comparable compression
rates. The costs of coding -the segment contours
themselves are not included in the comparison.

In the case of the ideal synthetic non-textured imagery,
the proposed method outperforms the block-based and
frequency-based JPEG method due to the precise
boundaries and lack of blocking artifacts. However, the
current lomo method is appropriate only for non-textured
imagery, an assumption that is violated for most natural
scenes. The areas that contain texture or edges not
included in the segmentation, e.g. the lips in the Lena
image, are not well reconstructed. Therefore, further
compression is required in -order to make the proposed
method competitive with ‘more established techniques,
even for non-textured natural images. Future work will
include an attempt to compress further the sparse
boundary condition images, and to generalize the lomo
method to include texture coding.

In summary, a novel segmentation-based image coding
technique has been introduced for non-textured imagery.
The object-based coding approach is unified with the
theoretical basis of the segmentation itself through
morphological local monotonicity.  Using  the
morphological interpretation of Laplace's equation within
a lomo pyramid, an interpolation method for smooth
segments from sparse points is introduced and applied to
multiresolution coding.
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Figure 1. The operation of the encoder at a given pyramid level, consisting of the multiresolution lomo
pyramid, and a copy of the reconstruction pyramid of the receiver. Though boundary condition points
are determined recursively point-by-point (see the gray arrows), a given pyramid level is not transmitted
to the receiver until it is complete.

Figure 2. Results of lomo encoding compared to progressive JPEG. All images are 128x128 pixel,
256 graylevels. Top row: synthetic image, lomo segmentation, lomo encoded at 0.25 bpp (not
including contour code), PSNR 37.9 dB, progressive JPEG encoded at 0.38 bpp, PSNR 33.8 dB.
Bottom row: original image, lomo segmentation lomo encoded image at 0.71 bpp (not including

contour code), PSNR 32.1 dB, JPEG at 0.71 bpp, PSNR 35.7 dB.
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